Regulating solution epitaxy of PbTiO3 film by Ni ions for enhanced visible-light photovoltaic current

Yiran Sun , Ruian Zhang , Jialu Chen , Chen Lin , Yi Fu , He Tian , Gaorong Han , Zhaohui Ren

Microstructures ›› 2025, Vol. 5 ›› Issue (4) : 2025073

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (4) :2025073 DOI: 10.20517/microstructures.2024.174
Research Article

Regulating solution epitaxy of PbTiO3 film by Ni ions for enhanced visible-light photovoltaic current

Author information +
History +
PDF

Abstract

The bulk photovoltaic effect of perovskite ferroelectric oxides has been widely explored because of its ability to obtain the above-bandgap photovoltage. However, the photovoltaic current in these materials remains low at the nA level in the visible-light range, severely limiting the device applications due to a wide bandgap. Herein, we report a Ni ions-assisted coprecipitation-hydrothermal method to regulate the growth of single-crystal PbTiO3 film with a controlled thickness from 0.7 μm to 2.2 μm. The epitaxial relationship between the tetragonal perovskite film and cubic Nb:SrTiO3 substrate has been characterized to be {001}film || {100}substrate. The film adopts a single-domain structure with a polarization direction pointing to the substrate. Interestingly, the film exhibits a large photovoltaic current under 405 nm irradiation, with values reaching 3.6 mA/cm2, which is ∼ 3.6 times higher than those of the reported ferroelectric materials. Introducing Ni ions as an additive into the precursor solution was investigated to effectively mediate the competitive nucleation and growth processes between the film and the by-product powder, thereby enabling a tunable thickness of the films. An intriguing Ti-vacancy composition gradient was revealed throughout the film and its coupling with the spontaneous polarization generates a polarization gradient and thus a built-in electric field, accounting for the excellent photovoltaic performance reported here.

Keywords

Composition gradient / single crystal / single domain / ferroelectric photovoltaic / competition growth

Cite this article

Download citation ▾
Yiran Sun, Ruian Zhang, Jialu Chen, Chen Lin, Yi Fu, He Tian, Gaorong Han, Zhaohui Ren. Regulating solution epitaxy of PbTiO3 film by Ni ions for enhanced visible-light photovoltaic current. Microstructures, 2025, 5(4): 2025073 DOI:10.20517/microstructures.2024.174

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kreisel J,Thomas PA.A photoferroelectric material is more than the sum of its parts.Nat Mater2012;11:260

[2]

Aydin E,Yildirim BK.Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells.Nature2023;623:732-8

[3]

Lin H,Ru X.Silicon heterojunction solar cells with up to 26.81% efficiency achieved by electrically optimized nanocrystalline-silicon hole contact layers.Nat Energy2023;8:789-99

[4]

Choi T,Choi YJ,Cheong SW.Switchable ferroelectric diode and photovoltaic effect in BiFeO3.Science2009;324:63-6

[5]

Fridkin VM.Bulk photovoltaic effect in noncentrosymmetric crystals.Crystallogr Rep2001;46:654-8

[6]

Yang SY,Byrnes SJ.Above-bandgap voltages from ferroelectric photovoltaic devices.Nat Nanotechnol2010;5:143-7

[7]

Xiao Z,Shao Y.Giant switchable photovoltaic effect in organometal trihalide perovskite devices.Nat Mater2015;14:193-8

[8]

Grinberg I,Torres M.Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials.Nature2013;503:509-12

[9]

Dalba G,Rocca F,Sainctavit P.Giant bulk photovoltaic effect under linearly polarized X-ray synchrotron radiation.Phys Rev Lett1995;74:988-91

[10]

Yan Y,Maurya D,Priya S.Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material.Nat Commun2016;7:13089 PMCID:PMC5062610

[11]

Tang YL,Ma XL.Ferroelectrics. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films.Science2015;348:547-51

[12]

Liu Y,Xie H.Internal-field-enhanced charge separation in a single-domain ferroelectric PbTiO3 photocatalyst.Adv Mater2020;32:e1906513

[13]

Lin C,Dai Z.Solution epitaxy of polarization-gradient ferroelectric oxide films with colossal photovoltaic current.Nat Commun2023;14:2341 PMCID:PMC10126087

[14]

Liu H,Ren Y.Large photovoltage and controllable photovoltaic effect in PbTiO3-Bi(Ni2/3+xNb1/3-x)O3-δ ferroelectrics.Adv Elect Mater2015;1:1400051

[15]

Pang D,He X,Zheng J.Anomalous photovoltaic effect in Bi(Ni2/3Ta1/3)O3-PbTiO3 ferroelectric solid solutions.J Am Ceram Soc2019;102:3448-56

[16]

Bobić JD,Ivanov M.Dielectric, ferroelectric and magnetic properties of La doped Bi5Ti3FeO15 ceramics.J Mater Sci: Mater Electron2016;27:2448-54

[17]

Wu L,Bennett-jackson AL,Davies PK.Polarization-modulated photovoltaic effect at the morphotropic phase boundary in ferroelectric ceramics.Adv Elect Materials2021;7:2100144

[18]

Ke X,Ren X.Polarization spinodal at ferroelectric morphotropic phase boundary.Phys Rev Lett2020;125:127602

[19]

Bennett JW,Rappe AM.New highly polar semiconductor ferroelectrics through d8 cation-O vacancy substitution into PbTiO3: a theoretical study.J Am Chem Soc2008;130:17409-12

[20]

Gou GY,Takenaka H.Post density functional theoretical studies of highly polar semiconductive Pb(Ti1-xNix )O3-x solid solutions: effects of cation arrangement on band gap.Phys Rev B2011;83

[21]

Wang F,Zheng F,Rappe AM.Substantial bulk photovoltaic effect enhancement via nanolayering.Nat Commun2016;7:10419 PMCID:PMC4735945

[22]

Zheng T,Zhou W.Bandgap modulation and magnetic switching in PbTiO3 ferroelectrics by transition elements doping.Ceram Int2016;42:6033-8

[23]

Zhou W,Yu L,Chu J.Optical band-gap narrowing in perovskite ferroelectric ABO3 ceramics (A = Pb, Ba; B = Ti) by ion substitution technique.Ceram Int2015;41:13389-92

[24]

Zhao C,Guo S.Enhanced electrical and photocurrent characteristics of sol-gel derived Ni-doped PbTiO3 thin films.Ceram Int2017;43:7861-5

[25]

Li X,Peng L,Wu W.Ferroelectric thin film on a silicon-based pn junction: Coupling photovoltaic properties.Ferroelectrics2016;500:250-8

[26]

Joseph J,Sivasubramanian V.Structural investigations on Pb(ZrxT1-x)O3 solid solutions using the X-ray Rietveld method.J Mater Sci2000;35:1571-5

[27]

Ren Z,Chen X.Electrostatic force-driven oxide heteroepitaxy for interface control.Adv Mater2018;30:e1707017

[28]

Luo B.Role of the defect in determining the properties of PbTi0.9Ni0.1O3 thin films.J Appl Phys2017;122:195104

[29]

Zhang Z,Lu L.Study on vacancy formation in ferroelectric PbTiO3 from ab initio.Appl Phys Lett2006;88:142902

[30]

Ohtomo A,Grazul JL.Artificial charge-modulationin atomic-scale perovskite titanate superlattices.Nature2002;419:378-80

[31]

Torres-pardo A,Zubko P.Spectroscopic mapping of local structural distortions in ferroelectric PbTiO3/SrTiO3 superlattices at the unit-cell scale.Phys Rev B2011;84

[32]

Ryu J,Song TK.Upshift of phase transition temperature in nanostructured PbTiO3 thick film for high temperature applications.ACS Appl Mater Interfaces2014;6:11980-7

[33]

Ren Z,Chen X.Mesopores induced zero thermal expansion in single-crystal ferroelectrics.Nat Commun2018;9:1638 PMCID:PMC5915410

[34]

Mantese JV,Micheli AL.Ferroelectric thin films with polarization gradients normal to the growth surface.Appl Phys Lett1995;67:721-3

[35]

Zhang J,Damodaran AR,Martin LW.Understanding order in compositionally graded ferroelectrics: flexoelectricity, gradient, and depolarization field effects.Phys Rev B2014;89

[36]

Marvan M,Fousek J.Theory of compositionally graded ferroelectrics and pyroelectricity.Appl Phys Lett2005;86:221922

[37]

Li H,Wang Y,Zhu Y.Misfit strain-misfit strain phase diagram of (110)-oriented ferroelectric PbTiO3 films: a phase-field study.Microstructures2024;4:2024004

[38]

Zhang L,Fan L.Giant polarization in super-tetragonal thin films through interphase strain.Science2018;361:494-7

[39]

Sturman BI.Ballistic and shift currents in the bulk photovoltaic effect theory.Phys -Usp2020;63:407-11

[40]

Li Y,Mao X.Enhanced bulk photovoltaic effect in two-dimensional ferroelectric CuInP2S6.Nat Commun2021;12:5896 PMCID:PMC8501070

[41]

Nakashima S,Shigematsu K,Shimizu M.Growth of epitaxial Mn and Zn codoped BiFeO3 thin films and an enhancement of photovoltage generated by a bulk photovoltaic effect.Jpn J Appl Phys2016;55:10TA07

[42]

Ma N,Yang Y.Photovoltaic-pyroelectric coupled effect induced electricity for self-powered photodetector system.Adv Mater2017;29

[43]

Ma N.Boosted photocurrent via cooling ferroelectric BaTiO3 materials for self-powered 405 nm light detection.Nano Energy2019;60:95-102

[44]

Lei Y,Wang S.Bulk photovoltaic effect of a hybrid ferroelectric semiconductor.Phys Rev B2024;109

[45]

Han S,Liu Y.Tailoring of a visible-light-absorbing biaxial ferroelectric towards broadband self-driven photodetection.Nat Commun2021;12:284 PMCID:PMC7804191

[46]

Ma Y,Liu Y.High performance self-powered photodetection with a low detection limit based on a two-dimensional organometallic perovskite ferroelectric.J Mater Chem C2021;9:881-7

[47]

Zhang X,Liu X.Solution-grown large-sized single-crystalline 2d/3d perovskite heterostructure for self-powered photodetection.Adv Optic Mater2020;8:2000311

[48]

Ji C,Peng Y,Li L.Ferroelectricity-driven self-powered ultraviolet photodetection with strong polarization sensitivity in a two-dimensional halide hybrid perovskite.Angew Chem Int Ed Engl2020;59:18933-7

[49]

Liu X,Long P.Polarization-driven self-powered photodetection in a single-phase biaxial hybrid perovskite ferroelectric.Angew Chem Int Ed Engl2019;58:14504-8

[50]

Ding J,Lian Z.A self-powered photodetector based on a CH3NH3PbI3 single crystal with asymmetric electrodes.CrystEngComm2016;18:4405-11

[51]

Fan Z,Li T.Enhanced photovoltaic effects and switchable conduction behavior in BiFe0.6Sc0.4O3 thin films.Acta Materialia2015;88:83-90

[52]

Gupta S,Gupta V.Ferroelectric photovoltaic properties of Ce and Mn codoped BiFeO3 thin film.J Appl Phys2014;115:014102

[53]

Sharma S,Gupta V.Effect of top metal contact on the ferroelectric photovoltaic response of BFO thin film capacitors.Vacuum2018;158:117-20

[54]

Ji W,Liang YC.Bulk photovoltaic effect at visible wavelength in epitaxial ferroelectric BiFeO3 thin films.Adv Mater2010;22:1763-6

[55]

Xu J,Fang L,Shen M.Space charge effect on the photocurrent of Pt-sandwiched Pb(Zr0.20Ti0.80)O3 film capacitors.J Appl Phys2009;106:113705

[56]

Yang SY,Byrnes SJ.Photovoltaic effects in BiFeO3.Appl Phys Lett2009;95:062909

[57]

Yarmarkin VK,Kazanin MM.Barrier photovoltaic effects in PZT ferroelectric thin films.Phys Solid State2000;42:522-7

[58]

Shimada T,Wang J.Hybrid Hartree-Fock density functional study of charged point defects in ferroelectric PbTiO3.Phys Rev B2013;87

[59]

Lin H,Fan Z.In situ training of an in-sensor artificial neural network based on ferroelectric photosensors.Nat Commun2025;16:421 PMCID:PMC11707328

AI Summary AI Mindmap
PDF

411

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/