Atomic structure of the phase interface in hafnium oxide-based thin films

Sirui Zhang , Xinpeng Mu , Qijun Yang , Borui Wang , Jiajia Liao , Yichun Zhou , Qiong Yang , Min Liao

Microstructures ›› 2025, Vol. 5 ›› Issue (4) : 2025069

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (4) :2025069 DOI: 10.20517/microstructures.2024.173
Research Article

Atomic structure of the phase interface in hafnium oxide-based thin films

Author information +
History +
PDF

Abstract

Significant progress has been made in studying the microscopic mechanism of ferroelectricity in HfO2 thin films. However, there is still insufficient research on the atomic arrangement and underlying principles of domain and phase boundaries. The atomic structure near the interface boundary can provide insights into the formation principles of phase boundaries, enabling a better understanding of phase stability, domain switching, and phase transformation. In this study, the aberration-corrected scanning transmission electron microscope is used to investigate the atomic structure of HfO2 materials at the boundaries. The study reveals the formation of orthorhombic phase (O phase)/monoclinic phase (M phase) interfaces throughout the entire grain, with both coherent interface and incoherent interfaces. By examining the atomic structure at these boundaries, we explain the strain and the structure of atoms at different phase boundaries. In a coherent interface, 90° charged domain walls and 90° uncharged domain walls are found, where charged domain walls have positively charged (oxygen-ion diminishing) and negatively charged (oxygen-ion accumulating) interfaces due to the polarization change in the direction perpendicular to the domain walls. In addition, the O phase/M phase coherent interface possesses a transition region between the O phase and M phase, but there is a stepped phase boundary structure in the O phase/M phase incoherent interface due to the high mismatch stress. These studies provide favorable assistance for the microstructure of phase stability and the evolution laws of phase transitions.

Keywords

HfO2 film / ferroelectric / interface structure / aberration-corrected scanning transmission electron microscope

Cite this article

Download citation ▾
Sirui Zhang, Xinpeng Mu, Qijun Yang, Borui Wang, Jiajia Liao, Yichun Zhou, Qiong Yang, Min Liao. Atomic structure of the phase interface in hafnium oxide-based thin films. Microstructures, 2025, 5(4): 2025069 DOI:10.20517/microstructures.2024.173

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tang YL,Ma XL.Ferroelectrics. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films.Science2015;348:547-51

[2]

Nelson CT,Jokisaari JR.Domain dynamics during ferroelectric switching.Science2011;334:968-71

[3]

Wang L,Deng S.Design of superior electrostriction in BaTiO3-based lead-free relaxors via the formation of polarization nanoclusters.InfoMat2023;5:e12362

[4]

Dawber M,Scott JF.Physics of thin-film ferroelectric oxides.Rev Mod Phys2005;77:1083-130

[5]

Scott JF.Applications of modern ferroelectrics.Science2007;315:954-9

[6]

Wu L,Dan H,Yang Y.A multifunctional optical-thermal logic gate sensor array based on ferroelectric BiFeO3 thin films.InfoMat2023;5:e12414

[7]

Chisholm MF,Oxley MP,Lee HN.Atomic-scale compensation phenomena at polar interfaces.Phys Rev Lett2010;105:197602

[8]

Zhang S,Tang Y.Giant polarization sustainability in ultrathin ferroelectric films stabilized by charge transfer.Adv Mater2017;29:1703543

[9]

Böscke TS,Bräuhaus D,Böttger U.Ferroelectricity in hafnium oxide thin films.Appl Phys Lett2011;99:102903

[10]

Cheema SS,Shanker N.Enhanced ferroelectricity in ultrathin films grown directly on silicon.Nature2020;580:478-82

[11]

Lee HJ,Lee K.Scale-free ferroelectricity induced by flat phonon bands in HfO2.Science2020;369:1343-7

[12]

Kim SB,Park J.Enhanced nucleation and growth of HfO2 thin films grown by atomic layer deposition on graphene.J Alloys Compd2018;742:676-82

[13]

Chen W,He J,Wang W.Effect of HfO2 framework on steam oxidation behavior of HfO2 doped Si coating at high temperatures.Ceram Int2022;48:20201-10

[14]

Peng Y,Xiao W.Effect of thickness scaling on the switching dynamics of ferroelectric HfO2-ZrO2 capacitors.Ceram Int2022;48:28489-95

[15]

Luo Q,Yang J.A highly CMOS compatible hafnia-based ferroelectric diode.Nat Commun2020;11:1391 PMCID:PMC7070068

[16]

Müller J,Schröder U.Ferroelectricity in simple binary ZrO2 and HfO2.Nano Lett2012;12:4318-23

[17]

Batra R,Jones JL,Ramprasad R.Factors favoring ferroelectricity in hafnia: a first-principles computational study.J Phys Chem C2017;121:4139-45

[18]

Xu X,Qi Y.Kinetically stabilized ferroelectricity in bulk single-crystalline HfO2:Y.Nat Mater2021;20:826-32

[19]

Sang X,Schenk T,Lebeau JM.On the structural origins of ferroelectricity in HfO2 thin films.Appl Phys Lett2015;106:162905

[20]

Lebeau JM,Wright NJ,Stemmer S.Determining ferroelectric polarity at the nanoscale.Appl Phys Lett2011;98:052904

[21]

Schroeder U,Müller J.Impact of different dopants on the switching properties of ferroelectric hafniumoxide.Jpn J Appl Phys2014;53:08LE02

[22]

Schroeder U,Mittmann T,Mikolajick T.Recent progress for obtaining the ferroelectric phase in hafnium oxide based films: impact of oxygen and zirconium.Jpn J Appl Phys2019;58:SL0801

[23]

Kim HJ,Kim YJ.Grain size engineering for ferroelectric Hf0.5Zr0.5O2 films by an insertion of Al2O3 interlayer.Appl Phys Lett2014;105:192903

[24]

Lee AJ,Hwang JH.Controlling the crystallinity of HfO2 thin film using the surface energy-driven phase stabilization and template effect.Appl Surf Sci2022;590:153082

[25]

Shimizu T,Kiguchi T.Ferroelectricity mediated by ferroelastic domain switching in HfO2-based epitaxial thin films.Appl Phys Lett2018;113:212901

[26]

Zheng, Y.; Xin, T.; Yang, J.; et al. In-situ atomic-level observation of reversible first-order transition in Hf0.5Zr0.5O2 ferroelectric film. In: 2022 International Electron Devices Meeting (IEDM); 2022 Dec 3-7; San Francisco, CA, USA. New York: IEEE; 2022. pp 6.3.1-6.3.4.

[27]

Zheng Y,Xin T.Direct atomic-scale visualization of the 90° domain walls and their migrations in Hf0.5Zr0.5O2 ferroelectric thin films.Mater Today Nano2023;24:100406

[28]

Fina I.Seeing ferroelectric phase transitions.Nat Mater2024;23:1015-6

[29]

Li X,Gao A.Ferroelastically protected reversible orthorhombic to monoclinic-like phase transition in ZrO2 nanocrystals.Nat Mater2024;23:1077-84

[30]

Pešić M,Larcher L.Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors.Adv Funct Materials2016;26:4601-12

[31]

Kim HJ,Kim YJ.A study on the wake-up effect of ferroelectric Hf0.5Zr0.5O2 films by pulse-switching measurement.Nanoscale2016;8:1383-9

[32]

Cheng Y,Ye KH.Reversible transition between the polar and antipolar phases and its implications for wake-up and fatigue in HfO2-based ferroelectric thin film.Nat Commun2022;13:645 PMCID:PMC8814215

[33]

Grimley ED,Mikolajick T,Lebeau JM.Atomic structure of domain and interphase boundaries in ferroelectric HfO2.Adv Materials Inter2018;5:1701258

[34]

Shi S,Cao T.Interface-engineered ferroelectricity of epitaxial Hf0.5Zr0.5O2 thin films.Nat Commun2023;14:1780 PMCID:PMC10063548

[35]

Zhang S,Suriyaprakash J.Flux-closure domains in PbTiO3/SrTiO3 multilayers mediated without tensile strain.J Phys Chem C2022;126:4630-7

[36]

Ding W,Tao L,Zhou Y.The atomic-scale domain wall structure and motion in HfO2-based ferroelectrics: a first-principle study.Acta Mater2020;196:556-64

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/