Advances in mRNA-LNP lung-targeted delivery strategies

Xu Liu , Shuhan Ji , Yichen Cai , Fuchun Yang , Jian You , Lihua Luo

Microstructures ›› 2025, Vol. 5 ›› Issue (4) : 2025076

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (4) :2025076 DOI: 10.20517/microstructures.2024.172
Review

Advances in mRNA-LNP lung-targeted delivery strategies

Author information +
History +
PDF

Abstract

The lung, a vital organ for homeostasis, is vulnerable to various diseases that challenge healthcare systems due to limited treatment options. Fortunately, mRNA-based gene therapy offers a promising solution, demonstrating high efficiency and safety across applications in vaccines, protein replacement therapy, and cancer treatment. However, naked mRNA faces challenges like degradation, poor cell penetration, and immunogenicity. The lung’s complex structure further complicates mRNA delivery. In this way, lipid nanoparticles (LNPs) have emerged as an effective solution, demonstrated by their success in COVID-19 mRNA vaccines through superior encapsulation and biocompatibility. Extensive studies focus on developing LNP-based pulmonary mRNA delivery systems for treating viral infections and lung diseases.This review analyzes the current state and developments in mRNA-LNP applications for pulmonary diseases and LNP-based strategies for lung-targeted mRNA delivery. We explore the optimization and development of LNP platforms across four administration routes: nebulized inhalation, intratracheal administration, nasal administration, and systemic administration. Our goal is to provide researchers with a comprehensive reference covering both fundamental principles and cutting-edge developments in pulmonary mRNA-LNP delivery systems.

Keywords

mRNA-LNP / pulmonary diseases / pulmonary delivery

Cite this article

Download citation ▾
Xu Liu, Shuhan Ji, Yichen Cai, Fuchun Yang, Jian You, Lihua Luo. Advances in mRNA-LNP lung-targeted delivery strategies. Microstructures, 2025, 5(4): 2025076 DOI:10.20517/microstructures.2024.172

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Murray JF.The structure and function of the lung.Int J Tuberc Lung Dis2010;14:391-6

[2]

Weibel ER.Lung morphometry: the link between structure and function.Cell Tissue Res2017;367:413-26

[3]

Pettigrew MM,Harris AD.The lung microbiome and pneumonia.J Infect Dis2021;223:S241-5

[4]

Mokrá D.Acute lung injury - from pathophysiology to treatment.Physiol Res2020;69:S353-66 PMCID:PMC8603709

[5]

Alfahad AJ,Aldossary AM.Current views in chronic obstructive pulmonary disease pathogenesis and management.Saudi Pharm J2021;29:1361-73 PMCID:PMC8720819

[6]

Rafeeq MM.Cystic fibrosis: current therapeutic targets and future approaches.J Transl Med2017;15:84 PMCID:PMC5408469

[7]

Nasim F,Eapen GA.Lung cancer.Med Clin North Am2019;103:463-73

[8]

2019 Chronic Respiratory Diseases Collaborators. Global burden of chronic respiratory diseases and risk factors, 1990-2019: an update from the Global Burden of Disease Study 2019.EClinicalMedicine2023;59:101936 PMCID:PMC7614570

[9]

Sahu I,Weidensee B,Kormann MSD.Recent developments in mRNA-based protein supplementation therapy to target lung diseases.Mol Ther2019;27:803-23 PMCID:PMC6453549

[10]

Maruggi G,Li J,Yu D.mRNA as a Transformative technology for vaccine development to control infectious diseases.Mol Ther2019;27:757-72 PMCID:PMC6453507

[11]

Ishii KJ.TLR ignores methylated RNA?.Immunity2005;23:111-3

[12]

Karikó K,Capodici J,Weissman D.mRNA is an endogenous ligand for Toll-like receptor 3.J Biol Chem2004;279:12542-50

[13]

Cullis PR.Lipid nanoparticle systems for enabling gene therapies.Mol Ther2017;25:1467-75 PMCID:PMC5498813

[14]

Chatterjee S,Sharma P.Endosomal escape: a bottleneck for LNP-mediated therapeutics.Proc Natl Acad Sci U S A2024;121:e2307800120 PMCID:PMC10945858

[15]

John R,Swaminathan S.Chemistry and art of developing lipid nanoparticles for biologics delivery: focus on development and scale-up.Pharmaceutics2024;16:131 PMCID:PMC10819224

[16]

Gilbert J,Arteta MY.Evolution of the structure of lipid nanoparticles for nucleic acid delivery: From in situ studies of formulation to colloidal stability.J Colloid Interface Sci2024;660:66-76

[17]

Mehta M,Yang X,Goldys EM.Lipid-Based nanoparticles for drug/gene delivery: an overview of the production techniques and difficulties encountered in their industrial development.ACS Mater Au2023;3:600-19 PMCID:PMC10636777

[18]

Cheng X.The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery.Adv Drug Deliv Rev2016;99:129-37

[19]

Schober GB,Arya DP.A careful look at lipid nanoparticle characterization: analysis of benchmark formulations for encapsulation of RNA cargo size gradient.Sci Rep2024;14:2403 PMCID:PMC10824725

[20]

Wu S,Shi L.An overview of lipid constituents in lipid nanoparticle mRNA delivery systems.Wiley Interdiscip Rev Nanomed Nanobiotechnol2024;16:e1978

[21]

Zhang Y,Wang C,Dong Y.Lipids and lipid derivatives for RNA delivery.Chem Rev2021;121:12181-277 PMCID:PMC10088400

[22]

Miao L,Huang L.mRNA vaccine for cancer immunotherapy.Mol Cancer2021;20:41 PMCID:PMC7905014

[23]

Jung O,Thuy LT.Modulating lipid nanoparticles with histidinamide-conjugated cholesterol for improved intracellular delivery of mRNA.Adv Healthc Mater2024;13:e2303857

[24]

Hajj KA,Deluty SB.Branched-tail lipid nanoparticles potently deliver mRNA in vivo due to enhanced ionization at endosomal pH.Small2019;15:e1805097

[25]

Eygeris Y,Kim J.Chemistry of lipid nanoparticles for RNA Delivery.Acc Chem Res2022;55:2-12

[26]

Suk JS,Kim N,Ensign LM.PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.Adv Drug Deliv Rev2016;99:28-51 PMCID:PMC4798869

[27]

Schoenmaker L,Kulkarni JA.mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability.Int J Pharm2021;601:120586 PMCID:PMC8032477

[28]

Huang X,Ma G.Unlocking the therapeutic applicability of LNP-mRNA: chemistry, formulation, and clinical strategies.Research (Wash D C)2024;7:0370 PMCID:PMC11185168

[29]

Ibrahim M,Elsadek NE.Polyethylene glycol (PEG): the nature, immunogenicity, and role in the hypersensitivity of PEGylated products.J Control Release2022;351:215-30

[30]

Tenchov R,Zhou QA.PEGylated lipid nanoparticle formulations: immunological safety and efficiency perspective.Bioconjug Chem2023;34:941-60 PMCID:PMC10190134

[31]

Zong Y,Wei T.Lipid nanoparticle (LNP) enables mRNA DElivery for cancer therapy.Adv Mater2023;35:e2303261

[32]

Maeki M,Niwa A,Tokeshi M.Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery.J Control Release2022;344:80-96 PMCID:PMC8851889

[33]

Geng C,Yan Y.A preparation method for mRNA-LNPs with improved properties.J Control Release2023;364:632-43

[34]

Sackmann EK,Beebe DJ.The present and future role of microfluidics in biomedical research.Nature2014;507:181-9

[35]

Damiati S,Damiati SA.Microfluidic devices for drug delivery systems and drug screening.Genes (Basel)2018;9:103 PMCID:PMC5852599

[36]

Shepherd SJ,Yadavali S.Scalable mRNA and siRNA lipid nanoparticle production using a parallelized microfluidic device.Nano Lett2021;21:5671-80 PMCID:PMC10726372

[37]

Subraveti SN,Bizmark N,Prud'homme RK.Synthesizing Lipid nanoparticles by turbulent flow in confined impinging jet mixers.J Vis Exp2024;

[38]

O'Brien Laramy MN,Cebrero YM.Process robustness in lipid nanoparticle production: a comparison of microfluidic and turbulent jet mixing.Mol Pharm2023;20:4285-96 PMCID:PMC11290355

[39]

Pratsinis A,Portmann M.Impact of non-ionizable lipids and phase mixing methods on structural properties of lipid nanoparticle formulations.Int J Pharm2023;637:122874

[40]

Cui L,Sonzini S.Development of a high-throughput platform for screening lipid nanoparticles for mRNA delivery.Nanoscale2022;14:1480-91

[41]

Bai C,Lu Y.Novel vectors and administrations for mRNA delivery.Small2023;19:e2303713

[42]

Wang J,Chong K.Recent advances in lipid nanoparticles and their safety concerns for mRNA delivery.Vaccines (Basel)2024;12:1148 PMCID:PMC11510967

[43]

Wang C,Dong Y.Lipid nanoparticle-mRNA formulations for therapeutic applications.Acc Chem Res2021;54:4283-93 PMCID:PMC10068911

[44]

Xiao Y,Huang X.Emerging mRNA technologies: delivery strategies and biomedical applications.Chem Soc Rev2022;51:3828-45

[45]

El-Mayta R,Billingsley MM,Mitchell MJ.Testing the in vitro and in vivo efficiency of mRNA-lipid nanoparticles formulated by microfluidic mixing.J Vis Exp2023;

[46]

Liu Y,He G,Dong J.Development of mRNA lipid nanoparticles: targeting and therapeutic aspects.Int J Mol Sci2024;25:10166 PMCID:PMC11432440

[47]

Hajiaghapour Asr M,Saedi Segherloo F.Lipid nanoparticles as promising carriers for mRNA vaccines for viral lung infections.Pharmaceutics2023;15:1127 PMCID:PMC10146241

[48]

Cullis PR.The 60-year evolution of lipid nanoparticles for nucleic acid delivery.Nat Rev Drug Discov2024;23:709-22

[49]

Igyártó BZ.The mRNA-LNP vaccines - the good, the bad and the ugly?.Front Immunol2024;15:1336906 PMCID:PMC10883065

[50]

Liu J,Mi P.Nanocarriers address intracellular barriers for efficient drug delivery, overcoming drug resistance, subcellular targeting and controlled release.Adv Drug Deliv Rev2024;207:115239

[51]

Jiao X,Qin S.Insights into the formulation of lipid nanoparticles for the optimization of mRNA therapeutics.Wiley Interdiscip Rev Nanomed Nanobiotechnol2024;16:e1992

[52]

Weng Y,Zhang J,Huang Y.RNAi therapeutic and its innovative biotechnological evolution.Biotechnol Adv2019;37:801-25

[53]

Barbier AJ,Zhang P,Anderson DG.The clinical progress of mRNA vaccines and immunotherapies.Nat Biotechnol2022;40:840-54

[54]

Shaw CA,Harper C.Safety and immunogenicity of an mRNA-based RSV vaccine including a 12-month booster in a phase 1 clinical trial in healthy older adults.J Infect Dis2024;230:e647-56 PMCID:PMC11420773

[55]

Hanada S,Carver KY.Respiratory viral infection-induced microbiome alterations and secondary bacterial pneumonia.Front Immunol2018;9:2640 PMCID:PMC6250824

[56]

Maginnis MS.Virus-receptor interactions: the key to cellular invasion.J Mol Biol2018;430:2590-611 PMCID:PMC6083867

[57]

Herold S,Ridge KM.Influenza virus-induced lung injury: pathogenesis and implications for treatment.Eur Respir J2015;45:1463-78

[58]

Arevalo CP,Le Sage V.A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes.Science2022;378:899-904 PMCID:PMC10790309

[59]

Bahl K,Yuzhakov O.Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses.Mol Ther2017;25:1316-27 PMCID:PMC5475249

[60]

Hou X,Langer R.Lipid nanoparticles for mRNA delivery.Nat Rev Mater2021;6:1078-94 PMCID:PMC8353930

[61]

Magini D,Mangiavacchi S.Self-amplifying mRNA vaccines expressing multiple conserved influenza antigens confer protection against homologous and heterosubtypic viral challenge.PLoS One2016;11:e0161193 PMCID:PMC4985159

[62]

Lokugamage MP,Beyersdorf J.Optimization of lipid nanoparticles for the delivery of nebulized therapeutic mRNA to the lungs.Nat Biomed Eng2021;5:1059-68 PMCID:PMC10197923

[63]

Zhuang X,Yang S.R848 Adjuvant laden with self-assembled nanoparticle-based mRNA vaccine elicits protective immunity against H5N1 in mice.Front Immunol2022;13:836274 PMCID:PMC9197463

[64]

Jackson CB,Chen B.Mechanisms of SARS-CoV-2 entry into cells.Nat Rev Mol Cell Biol2022;23:3-20 PMCID:PMC8491763

[65]

Gusev E,Solomatina L.SARS-CoV-2-specific immune response and the pathogenesis of COVID-19.Int J Mol Sci2022;23:1716 PMCID:PMC8835786

[66]

Meo SA,Akram J,Klonoff DC.COVID-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and moderna vaccines.Eur Rev Med Pharmacol Sci2021;25:1663-9

[67]

Khurana A,Khurana I.Role of nanotechnology behind the success of mRNA vaccines for COVID-19.Nano Today2021;38:101142 PMCID:PMC7997390

[68]

Chen K,Huang H.mRNA vaccines against SARS-CoV-2 variants delivered by lipid nanoparticles based on novel ionizable lipids.Adv Funct Mater2022;32:2204692 PMCID:PMC9349794

[69]

Venit T,Maseko SB.Nanobody against SARS-CoV-2 non-structural protein Nsp9 inhibits viral replication in human airway epithelia.Mol Ther Nucleic Acids2024;35:102304 PMCID:PMC11401216

[70]

Ma Q,Guo J.Immunization with a prefusion SARS-CoV-2 spike protein vaccine (RBMRNA-176) protects against viral challenge in mice and nonhuman primates.Vaccines (Basel)2022;10:1698 PMCID:PMC9610403

[71]

Tai W,Liu Y.A lung-selective delivery of mRNA encoding broadly neutralizing antibody against SARS-CoV-2 infection.Nat Commun2023;14:8042 PMCID:PMC10697968

[72]

Uraki R,Ito M.An mRNA vaccine encoding the SARS-CoV-2 receptor-binding domain protects mice from various Omicron variants.NPJ Vaccines2024;9:4 PMCID:PMC10761957

[73]

Li J,Chen Z.A spike-based mRNA vaccine that induces durable and broad protection against porcine deltacoronavirus in piglets.J Virol2024;98:e0053524 PMCID:PMC11406889

[74]

Kim J,Mukherjee A.Rapid generation of circulating and mucosal decoy human ACE2 using mRNA nanotherapeutics for the potential treatment of SARS-CoV-2.Adv Sci (Weinh)2022;9:e2202556 PMCID:PMC9762296

[75]

Milligan EC,Williams CA.Infant rhesus macaques immunized against SARS-CoV-2 are protected against heterologous virus challenge 1 year later.Sci Transl Med2023;15:eadd6383

[76]

Zhao H,Li XF.Long-term stability and protection efficacy of the RBD-targeting COVID-19 mRNA vaccine in nonhuman primates.Signal Transduct Target Ther2021;6:438 PMCID:PMC8703211

[77]

Qin J,Xu J.Design and preclinical evaluation of a universal SARS-CoV-2 mRNA vaccine.Front Immunol2023;14:1126392 PMCID:PMC10076570

[78]

Ye Z,McKay LGA.Monovalent SARS-COV-2 mRNA vaccine using optimal UTRs and LNPs is highly immunogenic and broadly protective against Omicron variants.Proc Natl Acad Sci U S A2023;120:e2311752120 PMCID:PMC10756290

[79]

Polack FP,Kitchin N.C4591001 Clinical Trial GroupSafety and efficacy of the BNT162b2 mRNA covid-19 vaccine.N Engl J Med2020;383:2603-15 PMCID:PMC7745181

[80]

Baden LR,Essink B.COVE Study GroupEfficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine.N Engl J Med2021;384:403-16 PMCID:PMC7787219

[81]

Dagan N,Kepten E.BNT162b2 mRNA covid-19 vaccine in a nationwide mass vaccination setting.N Engl J Med2021;384:1412-23 PMCID:PMC7944975

[82]

Corbett KS,Leist SR.SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness.Nature2020;586:567-71 PMCID:PMC7581537

[83]

Borchers AT,Gershwin ME.Respiratory syncytial virus - a comprehensive review.Clin Rev Allergy Immunol2013;45:331-79 PMCID:PMC7090643

[84]

Garcia-Garcia ML,Del Rosal Rabes T.Pediatric asthma and viral infection.Arch Bronconeumol2016;52:269-73 PMCID:PMC7105201

[85]

Qiu X,Lu Y.Development of mRNA vaccines against respiratory syncytial virus (RSV).Cytokine Growth Factor Rev2022;68:37-53

[86]

Wu N,Shen Y.A potential bivalent mRNA vaccine candidate protects against both RSV and SARS-CoV-2 infections.Mol Ther2024;32:1033-47 PMCID:PMC11163217

[87]

King TE Jr,Selman M.Idiopathic pulmonary fibrosis.Lancet2011;378:1949-61

[88]

Eelen G,Li X.Basic and therapeutic aspects of angiogenesis updated.Circ Res2020;127:310-29

[89]

Popoola DO,Men Y.Lung-specific mRNA delivery enabled by sulfonium lipid nanoparticles.Nano Lett2024;24:8080-8 PMCID:PMC12013526

[90]

Liu GY,Dematte JE.Advances in the management of idiopathic pulmonary fibrosis and progressive pulmonary fibrosis.BMJ2022;377:e066354

[91]

Martinez FJ,Pardo A.Idiopathic pulmonary fibrosis.Nat Rev Dis Primers2017;3:17074

[92]

Spagnolo P,Jones MG.Idiopathic pulmonary fibrosis: Disease mechanisms and drug development.Pharmacol Ther2021;222:107798 PMCID:PMC8142468

[93]

Moss BJ,Rosas IO.Pathogenic mechanisms underlying idiopathic pulmonary fibrosis.Annu Rev Pathol2022;17:515-46

[94]

Richeldi L,Jones MG.Idiopathic pulmonary fibrosis.Lancet2017;389:1941-52

[95]

Massaro M,Baudo G.Lipid nanoparticle-mediated mRNA delivery in lung fibrosis.Eur J Pharm Sci2023;183:106370 PMCID:PMC10898324

[96]

Wang Y,Liu Y.Realveolarization with inhalable mucus-penetrating lipid nanoparticles for the treatment of pulmonary fibrosis in mice.Sci Adv2024;10:eado4791 PMCID:PMC11168475

[97]

Zhang R,Chen C.Inhaled mRNA Nanoformulation with biogenic ribosomal protein reverses established pulmonary fibrosis in a bleomycin-induced murine model.Adv Mater2022;34:e2107506

[98]

Rajendran P,Thangavel J.The vascular endothelium and human diseases.Int J Biol Sci2013;9:1057-69 PMCID:PMC3831119

[99]

Augustin HG.Organotypic vasculature: from descriptive heterogeneity to functional pathophysiology.Science2017;357:eaal2379

[100]

Teijaro JR,Cahalan S.Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection.Cell2011;146:980-91 PMCID:PMC3176439

[101]

Radloff K,Dunne CM.Cationic LNP-formulated mRNA expressing Tie2-agonist in the lung endothelium prevents pulmonary vascular leakage.Mol Ther Nucleic Acids2023;34:102068 PMCID:PMC10682670

[102]

Zhao G,Weiner AI.TGF-βR2 signaling coordinates pulmonary vascular repair after viral injury in mice and human tissue.Sci Transl Med2024;16:eadg6229 PMCID:PMC12067352

[103]

McCarthy C,Johnson SR,McCormack FX.Lymphangioleiomyomatosis: pathogenesis, clinical features, diagnosis, and management.Lancet Respir Med2021;9:1313-27

[104]

Barrera E, Mancheño Franch N, Vera-Sempere F, Padilla Alarcón J. Lymphangioleiomyomatosis.Arch Bronconeumol2011;47:85-93

[105]

Kundu N.Lymphangioleiomyomatosis: a metastatic lung disease.Am J Physiol Cell Physiol2023;324:C320-6 PMCID:PMC9886342

[106]

Bhaoighill MN.Mechanistic target of rapamycin inhibitors: successes and challenges as cancer therapeutics.Cancer Drug Resist2019;2:1069-85 PMCID:PMC9019212

[107]

Qiu M,Chen J.Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis.Proc Natl Acad Sci U S A2022;119 PMCID:PMC8872770

[108]

Remark R,Gomez JE.The non-small cell lung cancer immune contexture. A major determinant of tumor characteristics and patient outcome.Am J Respir Crit Care Med2015;191:377-90 PMCID:PMC5447326

[109]

Jones GS.Recent advances in the management of lung cancer.Clin Med (Lond)2018;18:s41-6 PMCID:PMC6334032

[110]

Feng J,Wang D,Tan J.New strategies for lung cancer diagnosis and treatment: applications and advances in nanotechnology.Biomark Res2024;12:136 PMCID:PMC11558848

[111]

Cheng X,Li H.Lipid nanoparticles loaded with an antisense oligonucleotide gapmer against Bcl-2 for treatment of lung cancer.Pharm Res2017;34:310-20

[112]

Cheng X,Cheng G.T7 Peptide-conjugated lipid nanoparticles for dual modulation of Bcl-2 and Akt-1 in lung and cervical carcinomas.Mol Pharm2018;15:4722-32

[113]

Yu J,Zhang C.Targeted LNPs deliver IL-15 superagonists mRNA for precision cancer therapy.Biomaterials2025;317:123047

[114]

Hussain MS,Bisht AS.Groundbreaking mRNA lung cancer vaccine trials: a new dawn in cancer treatment.Curr Cancer Drug Targets2025:1082-7

[115]

Kon E,Hazan-Halevy I,Peer D.Targeting cancer with mRNA-lipid nanoparticles: key considerations and future prospects.Nat Rev Clin Oncol2023;20:739-54

[116]

Kiaie SH,Ahmadi A.Recent advances in mRNA-LNP therapeutics: immunological and pharmacological aspects.J Nanobiotechnology2022;20:276 PMCID:PMC9194786

[117]

Rospond B,Muszyńska B.The history, current state and perspectives of aerosol therapy.Acta Pharm2022;72:225-43

[118]

van Rijn CJM,Bem RA.Low energy nebulization preserves integrity of SARS-CoV-2 mRNA vaccines for respiratory delivery.Sci Rep2023;13:8851 PMCID:PMC10231294

[119]

Yan R,Yang X.Nebulized inhalation drug delivery: clinical applications and advancements in research.J Mater Chem B2025;13:821-43

[120]

Miao H,Li Y.Optimization of formulation and atomization of lipid nanoparticles for the inhalation of mRNA.Int J Pharm2023;640:123050

[121]

Kim J,Lin Y.Engineering Lipid Nanoparticles for Enhanced Intracellular Delivery of mRNA through Inhalation.ACS Nano2022;16:14792-806 PMCID:PMC9939008

[122]

Jiang AY,Raji IO.Combinatorial development of nebulized mRNA delivery formulations for the lungs.Nat Nanotechnol2024;19:364-75 PMCID:PMC10954414

[123]

Bai X,Li F.Optimized inhaled LNP formulation for enhanced treatment of idiopathic pulmonary fibrosis via mRNA-mediated antibody therapy.Nat Commun2024;15:6844 PMCID:PMC11315999

[124]

Liu S,Shan X.Charge-assisted stabilization of lipid nanoparticles enables inhaled mRNA delivery for mucosal vaccination.Nat Commun2024;15:9471 PMCID:PMC11531489

[125]

Courrier HM,Vandamme TF.Pulmonary drug delivery systems: recent developments and prospects.Crit Rev Ther Drug Carrier Syst2002;19:425-98

[126]

Molina RM,Hirano H.Pulmonary distribution of nanoceria: comparison of intratracheal, microspray instillation and dry powder insufflation.Inhal Toxicol2016;28:550-60 PMCID:PMC5216459

[127]

Wang H,Sun X.Intratracheal delivery of nano- and microparticles and hyperpolarized gases: a promising strategy for the imaging and treatment of respiratory disease.Chest2020;157:1579-90

[128]

Tafech B,Leung J.Exploring mechanisms of lipid nanoparticle-mucus interactions in healthy and cystic fibrosis conditions.Adv Healthc Mater2024;13:e2304525

[129]

Zhang H,Soto MR,Ghosh D.Aerosolizable lipid nanoparticles for pulmonary delivery of mrna through design of experiments.Pharmaceutics2020;12:1042 PMCID:PMC7692784

[130]

Friis KP,Oag S.Spray dried lipid nanoparticle formulations enable intratracheal delivery of mRNA.J Control Release2023;363:389-401

[131]

Sarode A,Vargas-Montoya N.Inhalable dry powder product (DPP) of mRNA lipid nanoparticles (LNPs) for pulmonary delivery.Drug Deliv Transl Res2024;14:360-72 PMCID:PMC10761450

[132]

Beck SE,Barberena CI.Deposition and expression of aerosolized rAAV vectors in the lungs of Rhesus macaques.Mol Ther2002;6:546-54

[133]

Pardi N,Muramatsu H.Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes.J Control Release2015;217:345-51 PMCID:PMC4624045

[134]

Geng L,Kodama Y,Kawakami S.Influence of lipid composition of messenger RNA-loaded lipid nanoparticles on the protein expression via intratracheal administration in mice.Int J Pharm2023;637:122896

[135]

Tam A,An K.Lipid nanoparticle formulations for optimal RNA-based topical delivery to murine airways.Eur J Pharm Sci2022;176:106234

[136]

Loughrey D.Non-liver mRNA Delivery.Acc Chem Res2022;55:13-23

[137]

Zhang W,Thorn JA,Ramautar R.Understanding the significance of sample preparation in studies of the nanoparticle metabolite corona.ACS Meas Sci Au2022;2:251-60 PMCID:PMC9204816

[138]

Ke PC,Parak WJ,Caruso F.A decade of the protein corona.ACS Nano2017;11:11773-6

[139]

Walczyk D,Monopoli MP,Dawson KA.What the cell “sees” in bionanoscience.J Am Chem Soc2010;132:5761-8

[140]

Lynch I,Linse S.Detecting cryptic epitopes created by nanoparticles.Sci STKE2006;2006:pe14

[141]

Monopoli MP,Salvati A.Biomolecular coronas provide the biological identity of nanosized materials.Nat Nanotechnol2012;7:779-86

[142]

Petersen DMS,Hajj KA.Branched-tail lipid nanoparticles for intravenous mRNA delivery to lung immune, endothelial, and alveolar cells in mice.Adv Healthc Mater2024;13:e2400225 PMCID:PMC11368637

[143]

Eygeris Y,Kim J.Thiophene-based lipids for mRNA delivery to pulmonary and retinal tissues.Proc Natl Acad Sci U S A2024;121:e2307813120 PMCID:PMC10945828

[144]

Kim M,Lee G.Novel piperazine-based ionizable lipid nanoparticles allow the repeated dose of mRNA to fibrotic lungs with improved potency and safety.Bioeng Transl Med2023;8:e10556

[145]

Kowalski PS,Huang Y,Langer R.Ionizable amino-polyesters synthesized via ring opening polymerization of tertiary amino-alcohols for tissue selective mRNA delivery.Adv Mater2018;:e1801151 PMCID:PMC6320729

[146]

Guéguen C,Briand M.Evaluating how cationic lipid affects mRNA-LNP physical properties and biodistribution.Eur J Pharm Biopharm2024;195:114077

[147]

Zeng G,Yang H.Cationic lipid pairs enhance liver-to-lung tropism of lipid nanoparticles for in vivo mRNA delivery.ACS Appl Mater Interfaces2024;16:25698-709

[148]

Cheng Q,Farbiak L,Dilliard SA.Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing.Nat Nanotechnol2020;15:313-20 PMCID:PMC7735425

[149]

Wei T,Cheng Q.Lung SORT LNPs enable precise homology-directed repair mediated CRISPR/Cas genome correction in cystic fibrosis models.Nat Commun2023;14:7322 PMCID:PMC10640563

[150]

Dabke A,Dabke P,Khopade A.Revisiting the in-vitro and in-vivo considerations for in-silico modelling of complex injectable drug products.J Control Release2023;360:185-211

[151]

Sun Y,Lian X.In vivo editing of lung stem cells for durable gene correction in mice.Science2024;384:1196-202

[152]

Dilliard SA,Siegwart DJ.On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles.Proc Natl Acad Sci U S A2021;118 PMCID:PMC8719871

[153]

Vayalakkara RK,Chen HH.Photothermal/NO combination therapy from plasmonic hybrid nanotherapeutics against breast cancer.J Control Release2022;345:417-32

[154]

Radmand A,Beyersdorf J.Cationic cholesterol-dependent LNP delivery to lung stem cells, the liver, and heart.Proc Natl Acad Sci U S A2024;121:e2307801120 PMCID:PMC10945827

[155]

Fei Y,Liu P,Wei T.Simplified lipid nanoparticles for tissue- and cell-targeted mRNA delivery facilitate precision tumor therapy in a lung metastasis mouse model.Adv Mater2024;36:e2409812

[156]

Tkachenko E,Sideleva O.Caveolae, fenestrae and transendothelial channels retain PV1 on the surface of endothelial cells.PLoS One2012;7:e32655 PMCID:PMC3293851

[157]

Parton RG.Caveolae as plasma membrane sensors, protectors and organizers.Nat Rev Mol Cell Biol2013;14:98-112

[158]

Li Q,Peterson N.Engineering caveolae-targeted lipid nanoparticles to deliver mRNA to the lungs.ACS Chem Biol2020;15:830-6

AI Summary AI Mindmap
PDF

692

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/