Fluorine-doped titanium dioxide nanorod arrays for efficient photoelectrochemical water splitting

Ming-Hao Ji , Wen Chen , Ao-Sheng She , Yang Yang , Hao-Yan Shi , Hai-Long Wang , Ke-Xian Li , Xiu-Mei Lin , Yan-Xin Chen , Can-Zhong Lu

Microstructures ›› 2025, Vol. 5 ›› Issue (4) : 2025072

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (4) :2025072 DOI: 10.20517/microstructures.2024.165
Research Article

Fluorine-doped titanium dioxide nanorod arrays for efficient photoelectrochemical water splitting

Author information +
History +
PDF

Abstract

TiO2 is a well-known photocatalyst due to its excellent photocatalytic activity, low cost, and stability. However, its practical applications are limited by its poor charge transport and wide bandgap. In this study, F-doped TiO2 nanorod arrays were synthesized using a simple chemical bath annealing method, which resulted in significantly improved properties. Among the samples, 0.05F-T (F-doped TiO2 nanorods) exhibited the best performance, with a photocurrent of 7.34 mA/cm2 at 1.8 V vs. reversible hydrogen electrode (RHE), which is 4.61 times higher than that of pure TiO2 nanorods (1.59 mA/cm2). Incident photon-to-current efficiency measurements showed prominent photocurrent responses in the 325-375 nm range and a slight redshift toward the visible region around 425 nm, indicating improved light absorption. The electron-hole separation efficiency was enhanced, and bandgap and flat-band potential measurements confirmed the optimization of the energy band structure. The photoelectrochemical performance for water splitting was also evaluated, with 0.05F-T achieving the highest hydrogen production of 842.28 µmol/cm2 in 5 h at 1.8 V vs. RHE, which is 6.58 times higher than that of pure TiO2 (128.05 µmol/cm2). These results demonstrate that F-doped TiO2 nanorods are promising for enhancing photocatalytic hydrogen production.

Highlights

1. A simple wet chemical soaking method introduces the Fluoride (F) element into the TiO2 lattice.

2. F element doping changes the lattice spacing of TiO2 and optimizes the band structure.

3. The doping of the F element causes a red shift in the wavelength of TiO2 light absorption.

4. Efficient photoelectrochemical water splitting achieved by F-doped TiO2 nanorods.

Keywords

Photoelectrochemical water splitting / TiO2 nanorods / photoanodes / fluoride doping

Cite this article

Download citation ▾
Ming-Hao Ji, Wen Chen, Ao-Sheng She, Yang Yang, Hao-Yan Shi, Hai-Long Wang, Ke-Xian Li, Xiu-Mei Lin, Yan-Xin Chen, Can-Zhong Lu. Fluorine-doped titanium dioxide nanorod arrays for efficient photoelectrochemical water splitting. Microstructures, 2025, 5(4): 2025072 DOI:10.20517/microstructures.2024.165

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Scheffe JR,Patzke GR.Solar hydrogen production.Energy Tech2022;10:2101021

[2]

Zou Z,Sayama K.Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst.Nature2001;414:625-7

[3]

Voloshchenko GN.Production of hydrogen through high-temperature electrolysis of water.Nanotechnol Russia2020;15:333-40

[4]

Cai L,Xiang Y.Study on the reaction pathways of steam methane reforming for H2 production.Energy2020;207:118296

[5]

Fujishima A.Electrochemical photolysis of water at a semiconductor electrode.Nature1972;238:37-8

[6]

Ding C,Wang Z.Photoelectrocatalytic water splitting: significance of cocatalysts, electrolyte, and interfaces.ACS Catal2017;7:675-88

[7]

Cho IS,Lee CH,Prinz FB.Rapid and controllable flame reduction of TiO2 nanowires for enhanced solar water-splitting.Nano Lett2014;14:24-31

[8]

Tong M,Lin S.Ultra-thin carbon doped TiO2 nanotube arrays for enhanced visible-light photoelectrochemical water splitting.Appl Surf Sci2023;623:156980

[9]

Shi H,Ji M.A novel structure Ti/Fe2O3/Cu2S/Co(OH)x enhances the photoelectrochemical water splitting performance of iron oxide.Chem Synth2024;4:45

[10]

Tan C,Wu XJ.Recent advances in ultrathin two-dimensional nanomaterials.Chem Rev2017;117:6225-331

[11]

Qiu Y,Chen H.Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting.Sci Bull (Beijing)2019;64:1348-80

[12]

Lianos P.Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen.Appl Catal B-Environ2017;210:235-54

[13]

Kment S,Pausova S.Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting - superior role of 1D nanoarchitectures and of combined heterostructures.Chem Soc Rev2017;46:3716-69

[14]

Jabbar ZH,Ammar SH.The latest progress in the design and application of semiconductor photocatalysis systems for degradation of environmental pollutants in wastewater: Mechanism insight and theoretical calculations.Mater Sci Semicond Process2024;173:108153

[15]

Wang Y,Ho W,Zou Z.Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation.J Hazard Mater2009;169:77-87

[16]

Vorontsov AV.Structure, electronic and optical properties of bilayer anatase nanoribbons.Comput Mater Sci2018;155:266-81

[17]

Meena B,Suryakala D,Subrahmanyam C.Efficient solar water splitting using a CdS quantum dot decorated TiO2/Ag2Se photoanode.Int J Hydrog Energy2021;46:34079-88

[18]

Kaushal N,Tyagi S.NH2-MIL-101(Fe)/N-CNDs as a visible light photocatalyst for degradation of fluoroquinolone antibiotics in water.Mater Chem Phys2025;332:130198

[19]

Amal R,Wang Y.Enriched horizon of applied catalysis b: environment and energy.Appl Catal B- Environ2024;343:123593

[20]

Han C,Zhao W.TiO2/CeO2 core/shell heterojunction nanoarrays for highly efficient photoelectrochemical water splitting.Int J Hydrog Energy2017;42:12276-83

[21]

Guo Q,Ma Z.Fundamentals of TiO2 photocatalysis: concepts, mechanisms, and challenges.Adv Mater2019;31:e1901997

[22]

Abdelkarim O,Selopal GS.Constructing quantum dots sensitized TiO2 nanotube p-n heterojunction for photoelectrochemical hydrogen generation.Chem Eng J2022;446:137312

[23]

Sharma D.Nanostructured TiO2 thin films sensitized by CeO2 as an inexpensive photoanode for enhanced photoactivity of water oxidation.J Alloys Compd2018;749:329-35

[24]

Yadav S.Review on undoped/doped TiO2 nanomaterial; synthesis and photocatalytic and antimicrobial activity: review on undoped/doped TiO2 nanomaterial.J Chin Chem Soc2017;64:103-16

[25]

Huang J,Li J,Li M.Excellent visible light responsive photocatalytic behavior of N-doped TiO2 toward decontamination of organic pollutants.J Hazard Mater2021;403:123857

[26]

Dey S.Influence of Ce doping on morphology, crystallinity and photoelectrochemical charge transfer characteristics of TiO2 nanorod arrays grown on conductive glass substrate.J Alloys Compd2021;881:160481

[27]

Jiang X,YX .Bio-inspired materials for photocatalytic hydrogen production.Chin J Struct Chem2020;39:2123-30

[28]

Jiang H,Liu J,Tian L.Alkali-free synthesis of a novel heterostructured CeO2-TiO2 nanocomposite with high performance to reduce Cr(VI) under visible light.Ceram Int2018;44:2709-17

[29]

Lu H,Hu J.Fabrication of a TiO2/Fe2O3 core/shell nanostructure by pulse laser deposition toward stable and visible light photoelectrochemical water splitting.ACS Omega2020;5:19861-7

[30]

Long D,Bai L.Continuously selective photocatalytic CO2 fixation via controllable S/Se ratio in a TiO2-MoSxSey dual-excitation heterostructured nanotree.ACS Photonics2020;7:3394-400

[31]

Cho IS,Forman AJ.Branched TiO2 nanorods for photoelectrochemical hydrogen production.Nano Lett2011;11:4978-84

[32]

Cho IS,Feng Y.Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance.Nat Commun2013;4:1723

[33]

Bayan E,Pustovaya L,Butova V.Zn-F co-doped TiO2 nanomaterials: synthesis, structure and photocatalytic activity.J Alloys Compd2020;822:153662

[34]

Cao X,Ma R.Ni2P nanocrystals modification on Ta:α-Fe2O3 photoanode for efficient photoelectrochemical water splitting: In situ formation and synergistic catalysis of Ni2P@NiOOH cocatalyst.Chem Eng J2022;449:137792

[35]

Zhang K,Park C.Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts.Nat Commun2019;10:2001 PMCID:PMC6494903

[36]

Dotan H,Grätzel M,Warren SC.Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger.Energy Environ Sci2011;4:958-64

[37]

Jia H,He Y.Engineering the defect distribution via boron doping in amorphous TiO2 for robust photocatalytic NO removal.Appl Catal B-Environ Energy2024;356:124239

[38]

Ma J,Chen G.Tuning the selectivity of photothermal CO2 hydrogenation through photo-induced interaction between Ni nanoparticles and TiO2.Appl Catal B- Environ2024;344:123600

[39]

abstract: Angew Chem Int Ed. 40/2024.Angew Chem Int Ed2024;63:e202484011

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/