Optimization of high-temperature energy storage properties of polyetherimide-based nanocomposite films via BST@CdS core-shell structure

Yuanhui Su , Yu Huan , Xue Wang , Jun Ouyang , Tao Wei

Microstructures ›› 2025, Vol. 5 ›› Issue (2) : 2025027

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (2) :2025027 DOI: 10.20517/microstructures.2024.159
Research Article

Optimization of high-temperature energy storage properties of polyetherimide-based nanocomposite films via BST@CdS core-shell structure

Author information +
History +
PDF

Abstract

Flexible dielectric composites stand as a promising candidate in high-power energy storage technology, but their practical application is hindered by low energy storage density (Ue), efficiency (η), and poor thermal stability at elevated temperatures. Herein, core-shell nanoparticles using barium strontium titanate coated with cadmium sulfide (BST@CdS) are designed and incorporated into polyetherimide (PEI) matrices as fillers to fabricate nanocomposite films. The CdS on the surface of BST nanoparticles, with its moderate dielectric constant, alleviates electric field mismatch between BST nanoparticles and PEI, while also introducing additional interfacial polarization. Additionally, the electron traps formed at the CdS/PEI interface can capture free and injected electrons. These features concurrently lead to an enhanced dielectric constant, reduced dielectric loss, and suppressed leakage current density, thereby boosting the energy storage performance of nanocomposite films. Accordingly, the optimized PEI/BST@CdS nanocomposite boasts an outstanding Ue of 9.4 J cm-3 and an η of 93.9% at 600 kV mm-1 and 25 °C. Remarkably, even at 150 °C, it still achieves superior energy storage performance with a Ue of 4.4 J cm-3 and an η of 90.7% at 400 kV mm-1. This study presents a viable approach for fabricating high-performance dielectric energy storage capacitors.

Keywords

Dielectric / energy storage / core-shell nanostructures / nanocomposite films / high temperature

Cite this article

Download citation ▾
Yuanhui Su, Yu Huan, Xue Wang, Jun Ouyang, Tao Wei. Optimization of high-temperature energy storage properties of polyetherimide-based nanocomposite films via BST@CdS core-shell structure. Microstructures, 2025, 5(2): 2025027 DOI:10.20517/microstructures.2024.159

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang M,Xu E.Polymer nanocomposite dielectrics for capacitive energy storage.Nat Nanotechnol2024;19:588-603

[2]

Yang M,Guo M.High-energy-density and high efficiency polymer dielectrics for high temperature electrostatic energy storage: a review.Small2022;18:e2205247

[3]

Luo H,Ellingford C.Interface design for high energy density polymer nanocomposites.Chem Soc Rev2019;48:4424-65

[4]

Thakur VK, Gupta RK. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects.Chem Rev2016;116:4260-317

[5]

Chen Q,Zhang S.Polymer-based dielectrics with high energy storage density.Annu Rev Mater Res2015;45:433-58

[6]

Dang ZM,Yao SH.Flexible nanodielectric materials with high permittivity for power energy storage.Adv Mater2013;25:6334-65

[7]

Cheng W.High energy storage properties of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics by incorporating Sr0.8Bi0.1γ0.1Ti0.8Zr0.2O2.95.Microstructures2023;3:2023023

[8]

Wang C,Huan Y.Study on the structure and properties of (1-x)KNNS-xBFANZ lead-free piezoelectric ceramics.Adv Ceram2023;44:490-6

[9]

Yang Y,Zou K.Regulating local electric field to optimize the energy storage performance of antiferroelectric ceramics via a composite strategy.J Adv Ceram2023;12:598-611

[10]

Luo X,Luo H.Greatly improved piezoelectricity and thermal stability of (Na, Sm) Co-doped CaBi2Nb2O9 ceramics.Adv Powder Mater2023;2:100116

[11]

Duan J,Du Q,Qi H.High-entropy tungsten bronze ceramics for large capacitive energy storage with near-zero losses.Adv Funct Mater2024;34:2409446

[12]

Liu X,Zhang Y,Dang Z.High-temperature polymer dielectric films with excellent energy storage performance utilizing inorganic outerlayers.Compos Sci Technol2024;245:110305

[13]

Fan X,Wang P.Ultra-low loading fillers induced excellent capacitive performance in polymer-based multilayer nanocomposites under harsh environments.Small2024;20:e2405786

[14]

Yuan Q,Zhang Z.Polymer-based nanocomposites with one-dimensional nanofillers for dielectric energy storage at high temperatures.ACS Appl Polym Mater2024;6:10136-48

[15]

Chen J,Yin N.Significant enhancement of high-temperature capacitive energy storage in dielectric films through surface self-assembly of BNNS coatings.Chem Eng J2024;479:147581

[16]

Wang P,Pan Z.Ultrahigh energy storage performance of layered polymer nanocomposites over a broad temperature range.Adv Mater2021;33:e2103338

[17]

Niu Y,He Y.Significantly enhancing the discharge efficiency of sandwich-structured polymer dielectrics at elevated temperature by building carrier blocking interface.Nano Energy2022;97:107215

[18]

Zeng J,Li B.Improved breakdown strength and energy storage performances of PEI-based nanocomposite with core-shell structured PI@BaTiO3 nanofillers.Ceram Int2022;48:20526-33

[19]

Li Q,Gadinski MR.Flexible high-temperature dielectric materials from polymer nanocomposites.Nature2015;523:576-9

[20]

Wu X,Zhang W.Atomic layer deposition fabricated core-shell nanostructures for enhanced polyetherimide composite dielectrics.J Mater Chem A2022;10:13097-105

[21]

Li X,Yang C.Enhancing high-temperature energy storage performance of PEI-based dielectrics by incorporating ZIF-67 with a narrow bandgap.ACS Appl Mater Interfaces2023;15:41828-38

[22]

Xu W,Jin L.High-k polymer nanocomposites filled with hyperbranched phthalocyanine-coated BaTiO3 for high-temperature and elevated field applications.ACS Appl Mater Interfaces2018;10:11233-41

[23]

Zuo P,Wang R.Poly(ether imide) poly(ether imide) nanocomposites with BaTiO3@TiO2@SiO2 or BaTiO3@SiO2@TiO2 fillers improve energy storage capacity and dielectric thermal stability.ACS Appl Nano Mater2023;6:18381-93

[24]

Wu X.Enhanced energy density of polyetherimide using low content barium titanate nanofillers.J Phys Conf Ser2023;2500:012008

[25]

Fan Z,Chang Y.Ultra-superior high-temperature energy storage properties in polymer nanocomposites via rational design of core-shell structured inorganic antiferroelectric fillers.J Mater Chem A2023;11:7227-38

[26]

Guo R,Liu W.High energy density in PVDF nanocomposites using an optimized nanowire array.Phys Chem Chem Phys2018;20:18031-7

[27]

Dang Z,Yuan Q.Ultrahigh dielectric energy density and efficiency in PEI-based gradient layered polymer nanocomposite.Adv Funct Mater2024;34:2406148

[28]

Su Y,Peng B,Wu L.Energy storage properties of flexible dielectric composites containing Ba0.4Sr0.6TiO3/MnO2 heterostructures.Chem Eng J2023;452:139316

[29]

Gao F,Guo Y,Szafran M.(Ba, Sr)TiO3/polymer dielectric composites-progress and perspective.Prog Mater Sci2021;121:100813

[30]

Feng Y,Zhang T.Double-gradients design of polymer nanocomposites with high energy density.Energy Storage Mater2022;44:73-81

[31]

Liu Y,Xiong H.Enhanced high-temperature capacitive energy storage by 0.55Bi0.5Na0.5TiO3-0.45(Bi0.2Sr0.7)TiO3 nanofibers in polyetherimide nanocomposites.ACS Appl Polym Mater2023;5:7277-87

[32]

Wang D,Zha J,Shi C.Functionalized graphene-BaTiO3/ferroelectric polymer nanodielectric composites with high permittivity, low dielectric loss, and low percolation threshold.J Mater Chem A2013;1:6162

[33]

Jun S,Kim J.Dielectric characteristics of graphene-encapsulated barium titanate polymer composites.Mater Chem Phys2020;255:123533

[34]

Wang P,Guo H.Ultrahigh enhancement rate of the energy density of flexible polymer nanocomposites using core-shell BaTiO3@MgO structures as the filler.J Mater Chem A2020;8:11124-32

[35]

Dong X,Wang Y,Hu Z.Polyetherimide-based composites containing novel BaTiO3@MgO nanofibers for high-temperature film capacitors.Colloid Surface A Physicochem Eng Asp2024;697:134425

[36]

Sun W,Jiang J.Dielectric and energy storage performances of polyimide/BaTiO3 nanocomposites at elevated temperatures.J App Phys2017;121:244101

[37]

Yuan C,Zhu Y.Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage.Nat Commun2020;11:3919 PMCID:PMC7411043

[38]

Drakopoulos SX,Maguire SM.Polymer nanocomposites: interfacial properties and capacitive energy storage.Prog Polym Sci2024;156:101870

[39]

Lin J,Zhou Y.Constructing deep traps to achieve excellent dielectric properties in crystal-based HfO2/PEI nanocomposite films with ultralow filler loadings.ACS Appl Mater Interfaces2024;16:11880-9

[40]

Kanamori T,Nagao D,Ishii H.Luminescence enhancement of ZnO-poly(methylmethacrylate) nanocomposite films by incorporation of crystalline BaTiO3 nanoparticles.Mater Sci Eng B2016;211:173-7

[41]

Ren X,Peng Z.Regulation of energy density and efficiency in transparent ceramics by grain refinement.Chem Eng J2020;390:124566

[42]

Tilley RJD.Colour and the optical properties of materials: an exploration of the relationship between light, the optical properties of materials and color. John Wiley & Sons, Ltd, 2011.

[43]

Wübbeler G,Elster C.Evaluation of uncertainties for CIELAB color coordinates.Color Res Appl2017;42:564-70

[44]

Su Y,Liu W.Color-coding real-time detection for the health of lithium-ion batteries.Acta Mater2025;283:120562

[45]

Ren W,Dan Z.High-temperature electrical energy storage performances of dipolar glass polymer nanocomposites filled with trace ultrafine nanoparticles.Chem Eng J2021;420:127614

[46]

Zhang C,Zhang T.Constructing a dual gradient structure of energy level gradient and concentration gradient to significantly improve the high-temperature energy storage performance of all organic composite dielectrics.Chem Eng J2024;491:151634

[47]

Hu D,Liu Y.Enhanced high-temperature performance of PEI dielectrics via deep trap energy levels and physically crosslinked effects.Chem Eng J2024;498:155398

[48]

Chen X,Wang F.Enhanced high-temperature capacitive performance of PEI dielectrics by an adjustable Al2O3 interlayer.ACS Appl Polym Mater2024;6:12616-22

[49]

Stark KH.Electric strength of irradiated polythene.Nature1955;176:1225-6

[50]

Nie L,Zhang P,Liu X.Significantly enhanced high-temperature energy storage capacity for polyetherimide-based nanocomposites via energy level modulation and electrostatic crosslinking.J Power Sources2025;626:235698

[51]

Sun S,Yang J.Surface modification engineering on polymer materials toward multilevel insulation properties and subsequent dielectric energy storage.Mater Today2024;80:758-823

[52]

Bhunia R,Ghosh B,Bhar R.Some aspects of microstructural and dielectric properties of nanocrystalline CdS/poly(vinylidene fluoride) composite thin films.Polym Int2015;64:924-34

[53]

Feng Y,Zhang T.Ultrahigh discharge efficiency and excellent energy density in oriented core-shell nanofiber-polyetherimide composites.Energy Storage Mater2020;25:180-92

[54]

Zhang X,Zhang Q.Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering.Adv Mater2015;27:819-24

[55]

Hu H,Luo S,Yue J.Recent advances in rational design of polymer nanocomposite dielectrics for energy storage.Nano Energy2020;74:104844

[56]

Samantaray S,Hung I,Satpathy SK.Ceramic-ceramic nanocomposite materials for energy storage applications: a review.J Energy Storage2024;99:113330

[57]

Ai D,Zhou Y.Tuning nanofillers in in situ prepared polyimide nanocomposites for high-temperature capacitive energy storage.Adv Energy Mater2020;10:1903881

[58]

Zhou Y,Wang S.Interface-modulated nanocomposites based on polypropylene for high-temperature energy storage.Energy Storage Mater2020;28:255-63

[59]

Li H,Ren L.Scalable polymer nanocomposites with record high-temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers.Adv Mater2019;31:e1900875

[60]

Lin J,Xia Y.The poly(arylene ether urea) double interface layer formed in PEEU@HfO2/PEI nanocomposites enables enhanced dielectric and energy storage performance.Surf Interfaces2024;49:104462

[61]

Wang F,Yang C.Improved capacitive energy storage nanocomposites at high temperature utilizing ultralow loading of bimetallic MOF.Small2023;19:e2300510

AI Summary AI Mindmap
PDF

53

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/