Cathodic dehalogenation polymerization of 2′,3′,5′,6′-tetrafluoro-4,4″-diiodo-1,1′:4′,1″-terphenyl on zinc metal surface for anode protection

Jinghang Wu , Tuoya Naren , Shiwei Zhang , Ruheng Jiang , Xiang Wang , Qianfeng Gu , Yan Yan , Libao Chen , Qichun Zhang

Microstructures ›› 2025, Vol. 5 ›› Issue (3) : 2025048

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (3) :2025048 DOI: 10.20517/microstructures.2024.158
Research Article

Cathodic dehalogenation polymerization of 2′,3′,5′,6′-tetrafluoro-4,4″-diiodo-1,1′:4′,1″-terphenyl on zinc metal surface for anode protection

Author information +
History +
PDF

Abstract

Fluorine-containing poly(p-phenylene) (CityU-42) films on zinc surfaces were directly synthesized using a cathodic dehalogenation C-C coupling strategy. The as-prepared polymers can effectively protect the zinc substrate in aqueous zinc-ion batteries. Because CityU-42 is rich in the electronegative fluorine group, it can attract the uniform deposition and rapid diffusion of Zn2+ on the surface of the anode. Moreover, a large number of benzene rings provide certain mechanical strength, enabling the protective layer to inhibit the growth of dendrites. As a result, the symmetric Zn Zn cell used CityU-42@Zn can stably cycle for over 1,900 h under 5 mA cm-2 and 1 mAh cm-2, while the CityU-42@Zn V2O5 full cells maintain high capacity retention after 800 cycles at 5 A g-1. The results highlight the potential of synthesizing conjugated polymers using cathodic dehalogenation technology, paving the way for further advancement in the field of energy storage technology.

Keywords

Fluorine-containing poly(p-phenylene) (CityU-42) / cathodic dehalogenation polymerization / anode protection / aqueous zinc-ion batteries (AZIBs)

Cite this article

Download citation ▾
Jinghang Wu, Tuoya Naren, Shiwei Zhang, Ruheng Jiang, Xiang Wang, Qianfeng Gu, Yan Yan, Libao Chen, Qichun Zhang. Cathodic dehalogenation polymerization of 2′,3′,5′,6′-tetrafluoro-4,4″-diiodo-1,1′:4′,1″-terphenyl on zinc metal surface for anode protection. Microstructures, 2025, 5(3): 2025048 DOI:10.20517/microstructures.2024.158

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhuo Z,Yu N.Intrinsically stretchable fully π-conjugated polymer film via fluid conjugated molecular external-plasticizing for flexible light-emitting diodes.Nat Commun2024;15:7990 PMCID:PMC11393078

[2]

Fu M,Jin W.A donor-acceptor (D-A) conjugated polymer for fast storage of anions.Angew Chem Int Ed2024;63:e202317393

[3]

Yin J,Chen H.Programmable zigzag π-extension toward graphene-like molecules by the stacking of naphthalene blocks.Nat Synth2023;2:838-47

[4]

Kong J,Yoo M.Long-term stable polymer solar cells with significantly reduced burn-in loss.Nat Commun2014;5:5688

[5]

Xiao M,Ji K.Achieving ideal transistor characteristics in conjugated polymer semiconductors.Sci Adv2023;9:eadg8659 PMCID:PMC10413658

[6]

Wu X,Huang W,Wang Z.Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multi-task learning.Nat Commun2023;14:468 PMCID:PMC9884246

[7]

Wu J,Rao L.A covalent organic polymer containing dative B ← N bonds: synthesis, single crystal structure, and physical properties.Inorg Chem Front2024;11:8285-9

[8]

Shi Y,Sun H.Thiazole imide-based all-acceptor homopolymer with branched ethylene glycol side chains for organic thermoelectrics.Angew Chem Int Ed2022;61:e202214192

[9]

Wu J,Gu Q.Recent progress in covalent organic frameworks for flexible electronic devices.FlexMat2024;1:160-72

[10]

Cheng L,Zhang B.Steering the topological defects in amorphous laser-induced graphene for direct nitrate-to-ammonia electroreduction.ACS Catal2022;12:11639-50

[11]

Milstein D.A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium.J Am Chem Soc1978;100:3636-8

[12]

Miyaura N,Suzuki A.A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides.Tetrahedron Lett1979;20:3437-40

[13]

King AO,Negishi E.Highly general stereo-, regio-, and chemo-selective synthesis of terminal and internal conjugated enynes by the Pd-catalysed reaction of alkynylzinc reagents with alkenyl halides.J Chem Soc Chem Commun1977;19:683-4

[14]

Ullmann F.Ueber synthesen in der biphenylreihe.Ber Dtsch Chem Ges1901;34:2174-85

[15]

Pouliot JR,Blaskovits JT,Leclerc M.Direct (Hetero)arylation polymerization: simplicity for conjugated polymer synthesis.Chem Rev2016;116:14225-74

[16]

Abdulkarim A,Jänsch D,Golling FE.A new solution to an old problem: synthesis of unsubstituted poly(para-phenylene).J Am Chem Soc2016;138:16208-11

[17]

Studer A.The electron is a catalyst.Nat Chem2014;6:765-73

[18]

Wang X,Liu H,Yan F.Cathodic polymerization through electrochemical dehalogenation.Macromolecules2023;56:10198-205

[19]

Wang X,Wu J.Constructing N-containing poly(p-Phenylene) (PPP) films through a cathodic-dehalogenation polymerization method.Small Methods2024;8:e2400185 PMCID:PMC11579557

[20]

Zeng C,Xu H.Electrochemical deposition of a single-crystalline nanorod polycyclic aromatic hydrocarbon film with efficient charge and exciton transport.Angew Chem Int Ed2022;61:e202115389 PMCID:PMC9306484

[21]

Zeng C,Zhang H.Electrochemical synthesis, deposition, and doping of polycyclic aromatic hydrocarbon films.J Am Chem Soc2021;143:2682-7

[22]

Besra L.A review on fundamentals and applications of electrophoretic deposition (EPD).Prog Mater Sci2007;52:1-61

[23]

Shi G,Xue G.A conducting polymer film stronger than aluminum.Science1995;267:994-6

[24]

Ambade RB,Shrestha NK.Controlled growth of polythiophene nanofibers in TiO2 nanotube arrays for supercapacitor applications.J Mater Chem A2017;5:172-80

[25]

Li G,Zhang S.A biocompatible electrolyte enables highly reversible Zn anode for zinc ion battery.Nat Commun2023;14:6526 PMCID:PMC10579325

[26]

Han M,Lu Q.Aqueous rechargeable Zn-iodine batteries: issues, strategies and perspectives.Small2024;20:e2310293

[27]

Sui BB,Wang PF.Salt solution etching to construct micro-gullies on the surface of Zn anodes enhances anodes performance in aqueous zinc-ion batteries.J Colloid Interface Sci2024;653:159-69

[28]

Zhao L,Zhang N.Construction of stable Zn metal anode by inorganic functional protective layer toward long-life aqueous Zn-ion battery.Energy Storage Mater2024;71:103628

[29]

Gao J,Zeng P.Strategies for optimizing the Zn anode/electrolyte interfaces toward stable Zn-based batteries.Small Methods2023;7:e2300855

[30]

Chen P,Xia Y.An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries.Adv Sci2021;8:e2100309 PMCID:PMC8188195

[31]

Zhang Z,Ma X,Feng J.Recent progress, mechanisms, and perspectives for crystal and interface chemistry applying to the Zn metal anodes in aqueous zinc-ion batteries.SusMat2022;2:114-41

[32]

Liu Z,Xi M.Interfacial engineering of Zn metal via a localized conjugated layer for highly reversible aqueous zinc ion battery.Angew Chem Int Ed2024;63:e202319091

[33]

Wang Y,Wang X.Recent advances of organic polymers for zinc-ion batteries.Sustain Energy Fuels2022;6:5439-58

[34]

Li J,Zhang Y.In situ constructing coordination compounds interphase to stabilize Zn metal anode for high-performance aqueous Zn-SeS2 batteries.Small2022;18:e2200567

[35]

Ye P,He K.A semi-interpenetrating network polymer coating for dendrite-free Zn anodes.J Power Sources2023;558:232622

[36]

Zheng J,Zheng Y.AgxZny protective coatings with selective Zn2+/H+ binding enable reversible Zn anodes.Nano Lett2023;23:6156-63

[37]

Ma G,Qiao H,Dong H.Porous V2CTx MXene as a High stability zinc anode protective coating.Nano Lett2024;24:14552-8

[38]

Li G,Lv S.In situ constructing a film-coated 3D porous Zn anode by iodine etching strategy toward horizontally arranged dendrite-free Zn deposition.Adv Funct Mater2023;33:2208288

[39]

Xia S,Liu J.In situ spontaneous construction of zinc phosphate coating layer toward highly reversible zinc metal anodes.Small2024;20:e2310497

[40]

Fu H,Li P.In-situ chemical conversion film for stabilizing zinc metal anodes.J Energy Chem2022;73:387-93

[41]

Liu H,Sui B.Calcium alginate hydrogel coating comprehensively optimizes Zn deposition behavior of aqueous zinc-ion batteries anode.Ind Eng Chem Res2024;63:13611-22

[42]

Li Q,Wang D.Mechanistic study of interfacial modification for stable Zn anode based on a thin separator.Small2022;18:e2201045

[43]

Naren T,Jiang R.Reactive polymer as artificial solid electrolyte interface for stable lithium metal batteries.Angew Chem Int Ed2023;62:e202305287

[44]

Zhu Q.Synthesis and crystallization behaviors of highly fluorinated aromatic polyesters.Polymer2007;48:3624-31

[45]

Krishnakumar V.A joint FTIR, FT-Raman and scaled quantum mechanical study of 1,3-dibromo-2,4,5,6-tetra-fluoro benzene (DTB) and 1,2,3,4,5-pentafluoro benzene (PB).J Raman Spectrosc2009;40:1104-9

[46]

Zang L,He M,Hu B.Fluorine-functionalized covalent-organic-framework-coated stir bar for the extraction of benzoylurea insecticides in pear juice and beverage followed by high-performance liquid chromatography-ultraviolet detection.J Agric Food Chem2022;70:12689-99

[47]

Huang P,Zhou S.Advanced Tri-layer carbon matrices with π-π stacking interaction for binder-free lithium-ion storage.ACS Appl Mater Interfaces2021;13:16516-27

[48]

Li W,Jia C,Wen Z.Covalent organic framework-derived fluorine, nitrogen dual-doped carbon as metal-free bifunctional oxygen electrocatalysts.J Colloid Interface Sci2023;650:275-83

[49]

Zhou M,Li H.Regulating preferred crystal plane with modification of exposed grain boundary toward stable Zn anode.Adv Funct Mater2025;35:2412092

AI Summary AI Mindmap
PDF

53

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/