Defect-induced interfacial modulation for enhanced resistive switching performance in antiferroelectric/ferroelectric heterostructures

Jia-Qi Liu , Hua-Long Zhu , Fang Liu , Li-Xin Yang , Yun-Long Tang , Yin-Lian Zhu , Ge Xu , Jin-Yuan Ma , Tong-Tong Shi , Yu-Jia Wang , Xiu-Liang Ma

Microstructures ›› 2025, Vol. 5 ›› Issue (3) : 2025064

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (3) :2025064 DOI: 10.20517/microstructures.2024.156
Research Article

Defect-induced interfacial modulation for enhanced resistive switching performance in antiferroelectric/ferroelectric heterostructures

Author information +
History +
PDF

Abstract

Resistive switching devices, particularly memristors, have attracted considerable interest due to their promising applications in neuromorphic computing and data storage. However, achieving high performance and reliability remains a significant challenge, especially in the optimization of their ferroelectric and switching properties. In this study, we report a substantial enhancement of both resistive switching and ferroelectric properties in NaNbO3 (NNO)/PbTiO3 (PTO) multilayers, facilitated by interfacial modifications of the electronic structure induced by defects and strain. The well-defined interfaces and strain gradients within the PTO layers lead to substantial alterations in local electronic properties, including Ti 3d orbital hybridization and oxygen octahedral tilting. These structural modifications enhance charge trapping dynamics, resulting in an ON/OFF ratio of 104, compared with 102 in single-layer NNO films. The synergistic effects of enhanced polarization and electronic state modulation are shown to optimize both the ferroelectric and resistive switching behaviors, highlighting the pivotal role of interface engineering in achieving high-performance memristive devices.

Keywords

Pulsed laser deposition / transmission electron microscopy / ferroelectrics

Cite this article

Download citation ▾
Jia-Qi Liu, Hua-Long Zhu, Fang Liu, Li-Xin Yang, Yun-Long Tang, Yin-Lian Zhu, Ge Xu, Jin-Yuan Ma, Tong-Tong Shi, Yu-Jia Wang, Xiu-Liang Ma. Defect-induced interfacial modulation for enhanced resistive switching performance in antiferroelectric/ferroelectric heterostructures. Microstructures, 2025, 5(3): 2025064 DOI:10.20517/microstructures.2024.156

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yoon DS,Lee SM.Alteration for a diffusion barrier design concept in future high-density dynamic and ferroelectric random access memory devices.Prog Mater Sci2003;48:275-371

[2]

Chang TC,Tsai TM,Sze SM.Resistance random access memory.Mater Today2016;19:254-64

[3]

Kim IJ.Ferroelectric transistors for memory and neuromorphic device applications.Adv Mater2023;35:e2206864

[4]

Kim SS,Kim W.Review of semiconductor flash memory devices for material and process issues.Adv Mater2023;35:e2200659

[5]

Migliato Marega G,Avsar A.Logic-in-memory based on an atomically thin semiconductor.Nature2020;587:72-7 PMCID:PMC7116757

[6]

Zhao M,Tang J,Wu H.Reliability of analog resistive switching memory for neuromorphic computing.App Phys Rev2020;7:011301

[7]

Li X,Huang J.Epitaxial strain enhanced ferroelectric polarization toward a giant tunneling electroresistance.ACS Nano2024;18:7989-8001

[8]

Li YZ,Bai Y,Zhang ZD.Ultrahigh-energy storage properties of (PbCa)ZrO3 antiferroelectric thin films via constructing a pyrochlore nanocrystalline structure.ACS Nano2020;14:6857-65

[9]

Tang YL,Ma XL.Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films.Science2015;348:547-51

[10]

Wang YJ,Zhu YL.Polar meron lattice in strained oxide ferroelectrics.Nat Mater2020;19:881-6

[11]

Xue F,Wang Z.Giant ferroelectric resistance switching controlled by a modulatory terminal for low-power neuromorphic in-memory computing.Adv Mater2021;33:e2008709

[12]

Luo Z,Guan Z.High-precision and linear weight updates by subnanosecond pulses in ferroelectric tunnel junction for neuro-inspired computing.Nat Commun2022;13:699 PMCID:PMC8816951

[13]

Yan X,Liu G.Silicon-based epitaxial ferroelectric memristor for high temperature operation in self-assembled vertically aligned BaTiO3-CeO2 films.Nano Res2022;15:9654-62

[14]

Molinari A,Neelisetty KK.Configurable resistive response in BaTiO3 ferroelectric memristors via electron beam radiation.Adv Mater2020;32:e1907541

[15]

McConville JPV,Wang B.Ferroelectric domain wall memristor.Adv Funct Mater2020;30:2000109 PMCID:PMC7357591

[16]

Ma C,Huang W.Sub-nanosecond memristor based on ferroelectric tunnel junction.Nat Commun2020;11:1439 PMCID:PMC7080735

[17]

Gabel M.Understanding microscopic operating mechanisms of a van der Waals planar ferroelectric memristor.Adv Funct Mater2021;31:2009999

[18]

Müller ML,Strkalj N.Schottky-to-ohmic switching in ferroelectric memristors based on semiconducting Hf0.93Y0.07O2 thin films.Appl Phys Lett2022;121:093501

[19]

Yang F,Huang W,Chen Y.Enhanced energy storage properties of hafnium-modified (0.7Ba0.55Sr0.45-0.3Bi0.5Na0.5)TiO3-based relaxor ferroelectric ceramics via regulating polarization nonlinearity and bandgap.J Mater Chem C2022;10:7614-25

[20]

Tang Y,Wu B.Periodic polarization waves in a strained, highly polar ultrathin SrTiO3.Nano Lett2021;21:6274-81

[21]

Mcgilly LJ,Feigl L,Setter N.Nanoscale defect engineering and the resulting effects on domain wall dynamics in ferroelectric thin films.Adv Funct Mater2017;27:1605196

[22]

Gradauskaite E,Meier QN,Trassin M.Ferroelectric domain engineering using structural defect ordering.Chem Mater2022;34:6468-75

[23]

Nataf GF,Gregg JM.Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials.Nat Rev Phys2020;2:634-48

[24]

Li C,Li T.Ultrathin BaTiO3-based ferroelectric tunnel junctions through interface engineering.Nano Lett2015;15:2568-73

[25]

Guo R,Wu L.Control of synaptic plasticity learning of ferroelectric tunnel memristor by nanoscale interface engineering.ACS Appl Mater Interfaces2018;10:12862-9

[26]

Chen D,He Q.Interface engineering of domain structures in BiFeO3 thin films.Nano Lett2017;17:486-93

[27]

Jeon BC,Lee MH.Flexoelectric effect in the reversal of self-polarization and associated changes in the electronic functional properties of BiFeO3 thin films.Adv Mater2013;25:5643-9

[28]

Chu YH,Yang CH.Nanoscale control of domain architectures in BiFeO3 thin films.Nano Lett2009;9:1726-30

[29]

Lee D,Baek SH.Active control of ferroelectric switching using defect-dipole engineering.Adv Mater2012;24:6490-5

[30]

Huang B,Li X.Schottky barrier control of self-polarization for a colossal ferroelectric resistive switching.ACS Nano2023;17:12347-57

[31]

Singh S.Electrically tuned photoelectrochemical properties of ferroelectric nanostructure NaNbO3 films.Appl Phys Lett2017;110:152902

[32]

Jung JH,Hong JI.Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator.ACS Nano2011;5:10041-6

[33]

Li S,Tang Y.Thickness-dependent a/a domain evolution in ferroelectric PbTiO3 films.Acta Mater2017;131:123-30

[34]

Tang Y,Ma X.A coherently strained monoclinic [111]PbTiO3 film exhibiting zero poisson’s ratio state.Adv Funct Mater2019;29:1901687

[35]

Chen YT,Zhu YL.Periodic vortex-antivortex pairs in tensile strained PbTiO3 films.Appl Phys Lett2020;117:192901

[36]

Zheng N,Li J.Perovskite-oxide-based ferroelectric synapses integrated on silicon.Adv Funct Mater2024;34:2316473

[37]

Wang Z,Li D,Bai H.Non-volatile resistance switching properties of PbTiO3 based metal-ferroelectric-semiconductor structures.Thin Solid Films2019;671:59-63

AI Summary AI Mindmap
PDF

76

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/