Nonvolatile multistate memories in BiFeO3-based nanocomposites designed by phase-field simulations

Huan Liang , Yajing Liu , Yang Zhang , Dong Li , Sijia Song , Xinmiao Huang , Weiwei Li

Microstructures ›› 2025, Vol. 5 ›› Issue (4) : 2025071

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (4) :2025071 DOI: 10.20517/microstructures.2024.152
review-article

Nonvolatile multistate memories in BiFeO3-based nanocomposites designed by phase-field simulations

Author information +
History +
PDF

Abstract

Realizing nonvolatile multiple polarization states in ferroelectric-based memories holds great promise for high-density data storage and advanced nanoelectronics. In this study, through phase-field simulations, we proposed a novel nonvolatile multistate memory design using BiFeO3 (BFO)-dielectric nanocomposites to enhance storage density. By embedding BFO pillars within a dielectric matrix, we stabilized four distinct polarization states. The effects of pillar sizes and electric fields on the stability and switching behavior of these states were systematically investigated, showing that all four states can be effectively switched using either uniform electric fields or localized voltages via a piezoresponse force microscope tip. Simulations of a 4 × 4 memory cell array further highlighted the potential of this design, achieving a storage density far exceeding that of conventional ferroelectric random access memory devices. Our work shows the potential of ferroelectric-dielectric nanocomposites on high-density, rapid-switching nonvolatile memory technologies.

Keywords

Nonvolatile multistate memories / BiFeO3 / super-tetragonal phase / self-assembled nanocomposites / phase-field simulations

Cite this article

Download citation ▾
Huan Liang, Yajing Liu, Yang Zhang, Dong Li, Sijia Song, Xinmiao Huang, Weiwei Li. Nonvolatile multistate memories in BiFeO3-based nanocomposites designed by phase-field simulations. Microstructures, 2025, 5(4): 2025071 DOI:10.20517/microstructures.2024.152

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AucielloO,RameshR.The physics of ferroelectric memories.Phys Today1998;51:22-7

[2]

SetterN,EngL.Ferroelectric thin films: review of materials, properties, and applications.J Appl Phys2006;100:051606

[3]

ArimotoY.Current status of ferroelectric random-access memory.MRS Bull2004;29:823-8

[4]

SebastianA,Khaddam-AljamehR.Memory devices and applications for in-memory computing.Nat Nanotechnol2020;15:529-44

[5]

KentAD.A new spin on magnetic memories.Nat Nanotechnol2015;10:187-91

[6]

CaoQ,WangXR.Nonvolatile multistates memories for high-density data storage.ACS Appl Mater Interfaces2020;12:42449-71

[7]

WuS,CaoR.Multi-state nonvolatile capacitances in HfO2-based ferroelectric capacitor for neuromorphic computing.Appl Phys Lett2024;124:102902

[8]

LeeD,BaekSH.Active control of ferroelectric switching using defect-dipole engineering.Adv Mater2012;24:6490-5

[9]

LeeD,KimTH.Multilevel data storage memory using deterministic polarization control.Adv Mater2012;24:402-6

[10]

VasudevanRK,ChengX.Deterministic arbitrary switching of polarization in a ferroelectric thin film.Nat Commun2014;5:4971

[11]

XuR,SaremiS.Kinetic control of tunable multi-state switching in ferroelectric thin films.Nat Commun2019;10:1282 PMCID:PMC6427024

[12]

WangG,ZhuW.Multiple local symmetries result in a common average polar axis in high-strain BiFeO3-based ceramics.Phys Rev Lett2023;130:076801

[13]

SaremiS,AllenFI.Local control of defects and switching properties in ferroelectric thin films.Phys Rev Mater2018;2

[14]

KavleP,ZornJA.Exchange-interaction-like behavior in ferroelectric bilayers.Adv Mater2023;35:e2301934

[15]

LiT,YuG.Realization of sextuple polarization states and interstate switching in antiferroelectric CuInP2S6.Nat Commun2024;15:2653 PMCID:PMC10965965

[16]

LeeJH,KimK,YangC.Out-of-plane three-stable-state ferroelectric switching: finding the missing middle states.Phys Rev B2016;93

[17]

LiuL,ChenX,YuanG.Flexible multi-state nonvolatile antiferroelectric memory.J Am Ceram Soc2022;105:6232-40

[18]

NohedaB,ShiraneG,CrossLE.A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O3 solid solution.Appl Phys Lett1999;74:2059-61

[19]

NohedaB,ShiraneG,JonesB.Stability of the monoclinic phase in the ferroelectric perovskite PbZr1-xTixO3.Phys Rev B2000;63

[20]

WangJ,ZhengH.Epitaxial BiFeO3 multiferroic thin film heterostructures.Science2003;299:1719-22

[21]

EerensteinW,ScottJF.Multiferroic and magnetoelectric materials.Nature2006;442:759-65

[22]

CatalanG.Physics and applications of bismuth ferrite.Adv Mater2009;21:2463-85

[23]

ZechesRJ,ZhangJX.A strain-driven morphotropic phase boundary in BiFeO3.Science2009;326:977-80

[24]

ChristenHM,KimHS,SpaldinNA.Stress-induced R-MA-MC-T symmetry changes in BiFeO3 films.Phys Rev B2011;83

[25]

RossellMD,PrangeMP.Atomic structure of highly strained BiFeO3 thin films.Phys Rev Lett2012;108:047601

[26]

YouL,ZouX.Characterization and manipulation of mixed phase nanodomains in highly strained BiFeO3 thin films.ACS Nano2012;6:5388-94

[27]

XueF,GuY,ChenL.Strain phase separation: formation of ferroelastic domain structures.Phys Rev B2016;94

[28]

Macmanus-driscollJL.Self-assembled heteroepitaxial oxide nanocomposite thin film structures: designing interface-induced functionality in electronic materials.Adv Funct Mater2010;20:2035-45

[29]

ZhaoR,WangH.Emergent multiferroism with magnetodielectric coupling in EuTiO3 created by a negative pressure control of strong spin-phonon coupling.Nat Commun2022;13:2364 PMCID:PMC9061821

[30]

MacManus-DriscollJL,LiW.Interface-related phenomena in epitaxial complex oxide ferroics across different thin film platforms: opportunities and challenges.Mater Horiz2023;10:1060-86 PMCID:PMC10068909

[31]

ZhangL,FanL.Giant polarization in super-tetragonal thin films through interphase strain.Science2018;361:494-7

[32]

ChenL.Phase-field models for microstructure evolution.Annu Rev Mater Res2002;32:113-40

[33]

ChenL.Applications of semi-implicit Fourier-spectral method to phase field equations.Comput Phys Commun1998;108:147-58

[34]

LiY,LiuZ.Effect of substrate constraint on the stability and evolution of ferroelectric domain structures in thin films.Acta Materialia2002;50:395-411

[35]

LiYL,AsayamaG,ZurbuchenMA.Ferroelectric domain structures in SrBi2Nb2O9 epitaxial thin films: electron microscopy and phase-field simulations.J Appl Phys2004;95:6332-40

[36]

LiYL,LiuZK.Effect of electrical boundary conditions on ferroelectric domain structures in thin films.Appl Phys Lett2002;81:427-9

[37]

ChoudhuryS,LiYL,JiaQX.Effect of ferroelastic twin walls on local polarization switching: Phase-field modeling.Appl Phys Lett2008;93:162901

[38]

GaoP,NelsonCT.Ferroelastic domain switching dynamics under electrical and mechanical excitations.Nat Commun2014;5:3801

[39]

ChenA,LuP.Role of scaffold network in controlling strain and functionalities of nanocomposite films.Sci Adv2016;2:e1600245 PMCID:PMC4928986

[40]

WangJ,LiQ,ChenL.Phase transitions and domain structures of ferroelectric nanoparticles: Phase field model incorporating strong elastic and dielectric inhomogeneity.Acta Materialia2013;61:7591-603

[41]

YadavAK,HsuSL.Observation of polar vortices in oxide superlattices.Nature2016;530:198-201

[42]

ZhouS,ZhouH,GuiZ.Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications.Front Phys2021;16:986

[43]

MengP,BianR.Sliding induced multiple polarization states in two-dimensional ferroelectrics.Nat Commun2022;13:7696 PMCID:PMC9744910

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/