Reversible phase transitions and enhanced electrostrain in BNST-xFN ceramics under electric and thermal stimuli

Ruiyi Jing , Wanchang Man , Xinru Nie , Leiyang Zhang , Li Jin

Microstructures ›› 2025, Vol. 5 ›› Issue (3) : 2025047

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (3) :2025047 DOI: 10.20517/microstructures.2024.149
Research Article

Reversible phase transitions and enhanced electrostrain in BNST-xFN ceramics under electric and thermal stimuli

Author information +
History +
PDF

Abstract

Ferroelectric materials based on (Bi0.5Na0.5)TiO3 are well-known for their outstanding chemical stability and exceptional electrical properties, particularly their large electrostrain response under applied electric fields, positioning them as promising candidates for precision actuator applications. In this study, we investigate the electrical and structural responses of lead-free (Bi0.38Na0.38Sr0.24)Ti1-x(Fe0.5Nb0.5)xO3 (BNST-xFN) ferroelectric ceramics under the combined effects of temperature and electric field. Using in-situ electric field and variable-temperature Raman spectroscopy, piezoelectric force microscopy, and comprehensive dielectric and ferroelectric property evaluations, we explore the evolution of structural transformations, polarization behavior, and macroscopic property changes in ceramics with different initial phase structures under thermal and electrical stimuli. Notably, the BNST-0.01FN composition, located near the boundary between the non-ergodic relaxor and ergodic relaxor phases, exhibits a remarkable room-temperature electrostrain of 0.37%, driven by a reversible electric field-induced nonpolar-to-polar phase transition. Upon heating, as the BNST ceramic approaches the phase boundary, a prominent electrostrain (~0.38%) is observed near the temperature of the ferroelectric-to-relaxor phase transition (TFR, ~60 °C) under the electric field. This study combines in-situ microstructural analysis with macroscopic ferroelectric characterization, providing a deeper understanding of the dynamic coupling between microscopic fields and macroscopic electrical properties, and offering valuable insights for the design of high-performance lead-free ferroelectric ceramics.

Keywords

(Bi0.5Na0.5)TiO3 / relaxor / phase boundary / electrostrain / reversible phase transition

Cite this article

Download citation ▾
Ruiyi Jing, Wanchang Man, Xinru Nie, Leiyang Zhang, Li Jin. Reversible phase transitions and enhanced electrostrain in BNST-xFN ceramics under electric and thermal stimuli. Microstructures, 2025, 5(3): 2025047 DOI:10.20517/microstructures.2024.149

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jo W,Acosta M.Giant electric-field-induced strains in lead-free ceramics for actuator applications - status and perspective.J Electroceram2012;29:71-93

[2]

Panda PK.PZT to lead free piezo ceramics: a review.Ferroelectrics2015;474:128-43

[3]

Yang L,Li F.Perovskite lead-free dielectrics for energy storage applications.Prog Mater Sci2019;102:72-108

[4]

Zhang L,Huang Y.Ultra-weak polarization-strain coupling effect boosts capacitive energy storage.Adv Mater2024;36:e2406219

[5]

Zhang S.High entropy design: a new pathway to promote the piezoelectricity and dielectric energy storage in perovskite oxides.Microstructures2023;3:2023003

[6]

Hao J,Zhai J.Progress in high-strain perovskite piezoelectric ceramics.Mater Sci Eng R Rep2019;135:1-57

[7]

Fan P,Ma W.Progress and perspective of high strain NBT-based lead-free piezoceramics and multilayer actuators.J Materiomics2021;7:508-44

[8]

Wei Y,Dong S.Enhancement of piezoelectric performance in (Bi1/2Na1/2)TiO3-based system through single-crystallization.Chem Eng J2024;496:153996

[9]

Li F,Jin L.Piezoelectric activity in Perovskite ferroelectric crystals.IEEE Trans Ultrason Ferroelectr Freq Control2015;62:18-32

[10]

Zeng J,Shi X,Zheng L.Large strain induced by the alignment of defect dipoles in (Bi3+,Fe3+) co-doped Pb(Zr,Ti)O3 ceramics.Scripta Mater2018;142:20-2

[11]

Bian L,Li K.High-performance [001]c-textured PNN-PZT relaxor ferroelectric ceramics for electromechanical coupling devices.Adv Funct Mater2020;30:2001846

[12]

Panda PK.Review: environmental friendly lead-free piezoelectric materials.J Mater Sci2009;44:5049-62

[13]

Zheng T,Xiao D.Recent development in lead-free perovskite piezoelectric bulk materials.Prog Mater Sci2018;98:552-624

[14]

Wang D,Rao G.Ultrahigh piezoelectricity in lead-free piezoceramics by synergistic design.Nano Energy2020;76:104944

[15]

Zhang S,Aulbach E,Rödel J.Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system.Appl Phys Lett2007;91:112906

[16]

Viola G,Yu C.Electric field-induced transformations in bismuth sodium titanate-based materials.Prog Mater Sci2021;122:100837

[17]

Zhou X,Luo H,Zhang D.Phase structure and properties of sodium bismuth titanate lead-free piezoelectric ceramics.Prog Mater Sci2021;122:100836

[18]

Wu X,Yang D,Wu J.Strain regulation via composition and valence dependent substitution in BNT-based solid solutions.Adv Powder Mater2023;2:100079

[19]

Lai L,Tian S,Zhang S.Giant electrostrain in lead-free textured piezoceramics by defect dipole design.Adv Mater2023;35:e2300519

[20]

Li T,Shi P.High-performance strain of lead-free relaxor-ferroelectric piezoceramics by the morphotropic phase boundary modification.Adv Funct Mater2022;32:2202307

[21]

Jing R,Hu Q.Phase evolution and relaxor to ferroelectric phase transition boosting ultrahigh electrostrains in (1-x)(Bi1/2Na1/2)TiO3-x(Bi1/2K1/2)TiO3 solid solutions.J Materiomics2022;8:335-46

[22]

Wang Z,Zhang N.Optimizing strain response in lead-free (Bi0.5Na0.5)TiO3-BaTiO3-NaNbO3 solid solutions via ferroelectric/(non-)ergodic relaxor phase boundary engineering.J Materiomics2023;9:244-55

[23]

Malik RA,Maqbool A.Temperature-insensitive high strain in lead-free Bi0.5(Na0.84K0.16)0.5TiO3-0.04SrTiO3 ceramics for actuator applications.J Am Ceram Soc2015;98:3842-8

[24]

Zhang X,Liu D,Cao W.Enhanced electric field induced strain in (1-x)((Bi0.5Na0.5)TiO3-Ba(Ti,Zr)O3)-xSrTiO3 ceramics.Ceram Int2018;44:12869-76

[25]

Bai W,Li W,Zhai J.Effect of SrTiO3 template on electric properties of textured BNT-BKT ceramics prepared by templated grain growth process.J Alloys Compd2014;603:149-57

[26]

Wang F,Tang Y.Large strain response in the ternary Bi0.5Na0.5TiO3-BaTiO3-SrTiO3 solid solutions.J Am Ceram Soc2012;95:1955-9

[27]

Lalitha KV,Rödel J.Propensity for spontaneous relaxor-ferroelectric transition in quenched (Na1/2Bi1/2)TiO3-BaTiO3 compositions.Appl Phys Lett2018;113:252902

[28]

Li T,Ke X.Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics.Acta Mater2017;128:337-44

[29]

Fan P,Xie B.Large electric-field-induced strain in B-site complex-ion (Fe0.5Nb0.5)4+-doped Bi1/2(Na0.82K0.12)1/2TiO3 lead-free piezoceramics.Ceram Int2018;44:3211-7

[30]

Wei Q,Zheng M.Giant strain of 0.65% obtained in B-site complex cations (Zn1/3Nb2/3)4+-modified BNT-7BT ceramics.J Alloys Compd2019;782:611-8

[31]

Ullah A,Hussain A,Lee HJ.Phase transitions and large electric field-induced strain in BiAlO3-modified Bi0.5(Na, K)0.5TiO3 lead-free piezoelectric ceramics.Curr Appl Phys2010;10:1174-81

[32]

Janbua J,Muanghlua R.High strain response of the (1-x)(0.94Bi0.5Na0.5TiO3-0.06BaTiO3)-xBaSnO3 lead free piezoelectric ceramics system.Ferroelectrics2016;490:13-22

[33]

Ge R,Duan S.Large electro-strain response of La3+ and Nb5+ co-doped ternary 0.85Bi0.5Na0.5TiO3-0.11Bi0.5K0.5TiO3-0.04BaTiO3 lead-free piezoelectric ceramics.J Alloys Compd2017;724:1000-6

[34]

Wang C.High energy storage properties of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 ceramics by incorporating Sr0.8Bi0.1γ0.1Ti0.8Zr0.2O2.95.Microstructures2023;3:2023023

[35]

Rahman JU,Maqbool A.Field induced strain response of lead-free BaZrO3-modified Bi0.5Na0.5TiO3-BaTiO3 ceramics.J Alloys Compd2014;593:97-102

[36]

Cheng R,Chu R,Du J.Electric field-induced ultrahigh strain and large piezoelectric effect in Bi1/2Na1/2TiO3-based lead-free piezoceramics.J Eur Ceram Soc2016;36:489-96

[37]

Bafandeh MR,Lee J.Enhanced electric field induced strain in complex-ion Ga3+ and Ta5+-doped 0.93BNT-0.07BT piezoceramic.J Electroceram2021;47:89-99

[38]

Li L,Xu Z,Chu R.Large strain response in (Mn,Sb)-modified (Bi0.5Na0.5)0.935Ba0.065TiO3 lead-free piezoelectric ceramics.Ceram Int2016;42:14886-93

[39]

Hao J,Chu R,Fu P.Field-induced large strain in lead-free (Bi0.5Na0.5)1-xBaxTi0.98(Fe0.5Ta0.5)0.02O3 piezoelectric ceramics.J Alloys Compd2016;677:96-104

[40]

Schütz D,Krauss W,Jackson T.Lone-pair-induced covalency as the cause of temperature- and field-induced instabilities in bismuth sodium titanate.Adv Funct Mater2012;22:2285-94

[41]

Soergel E.Piezoresponse force microscopy (PFM).J Phys D Appl Phys2011;44:464003

[42]

Jin L,Zhang S.Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures.J Am Ceram Soc2014;97:1-27

[43]

Shannon RD.Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides.Acta Cryst A1976;32:751-67

[44]

Jing R,Lian H,Shao X.Comparative study on structure, dielectric, and piezoelectric properties of (Na0.47Bi0.47Ba0.06)0.95A0.05TiO3 (A = Ca2+/Sr2+) ceramics: effect of radii of A-site cations.J Eur Ceram Soc2018;38:3111-7

[45]

Pasha UM,Thakur OP.In situ Raman spectroscopy of A-site doped barium titanate.Appl Phys Lett2007;91:062908

[46]

Zhang Y,Fu J,Fu Z.Giant strains of 0.70% achieved via a field-induced multiple phase transition in BNT-based relaxor antiferroelectric ceramics.J Eur Ceram Soc2023;43:4748-56

[47]

Kreisel J,Bouvier P.High-pressure Raman study of a relaxor ferroelectric: the Na0.5Bi0.5TiO3 perovskite.Phys Rev B2001;63:174106

[48]

Kreisel J,Jones G,Abello L.An X-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: the (Na1-xKx)0.5Bi0.5TiO3 (0 ≤x ≤1) solid solution.J Phys Condens Matter2000;12:3267

[49]

Bokov AA.Recent progress in relaxor ferroelectrics with perovskite structure.J Mater Sci2006;41:31-52

[50]

Zhao P,Wu L.High-performance relaxor ferroelectric materials for energy storage applications.Adv Energy Mater2019;9:1803048

[51]

Li G,Lin J.Eco-friendly cooling materials with synergistic behavior of electromechanical and electrocaloric effects based on constructing B-site defect field.Appl Mater Today2022;26:101332

[52]

Jia X,Xing H,Zheng P.Large electrostrain response in binary Bi1/2Na1/2TiO3-Ba(Mg1/3Nb2/3)O3 solid solution ceramics.J Alloys Compd2018;741:7-13

[53]

Smolenskii GA.New ferroelectrics of complex composition. IV.SciSpace1961;Available from: https://scispace.com/papers/new-ferroelectrics-of-complex-composition-iv-2wd1zsevvv [Last accessed on 7 Apr 2025]

[54]

Shi J,He J.Deferred polarization saturation boosting superior energy-storage efficiency and density simultaneously under moderate electric field in relaxor ferroelectrics.ACS Appl Energy Mater2022;5:3436-46

[55]

Yin J,Zhang Y.Ultrahigh strain in site engineering-independent Bi0.5Na0.5TiO3-based relaxor-ferroelectrics.Acta Mater2018;147:70-7

[56]

Dong G,Liu L,Cheng Z.Large electrostrain in Bi1/2Na1/2TiO3-based relaxor ferroelectrics: a case study of Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3-Bi(Ni2/3Nb1/3)O3 ceramics.J Materiomics2021;7:593-602

AI Summary AI Mindmap
PDF

51

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/