Pressure-assisted crystallization techniques for high-performance metal halide perovskite devices

Yuan Yu , Huitian Du , Qiang Liu , Zhiyong Pang

Microstructures ›› 2025, Vol. 5 ›› Issue (3) : 2025046

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (3) :2025046 DOI: 10.20517/microstructures.2024.144
Review

Pressure-assisted crystallization techniques for high-performance metal halide perovskite devices

Author information +
History +
PDF

Abstract

The Pressure-assisted crystallization (PAC) technique has evolved alongside the development of metal halide perovskite materials, effectively harnessing the soft lattice characteristics of perovskites and integrating with thermal processing methods to enable the transformation of perovskite materials from fine grains into quasi-single crystals. This technique has led to significant improvements in the performance of perovskite functional devices. In recent years, a wealth of research on the PAC technique has emerged, and this paper provides a comprehensive review of these studies. The review systematically explores the role of the PAC process in perovskite materials from three key aspects: the mechanism of PAC, the effect of PAC, and the application of PAC in devices. It highlights how pressure significantly enhances the quality of perovskite films and wafers, as well as the performance of related devices, by promoting grain growth, merging grain boundaries, and eliminating voids. Finally, the paper assesses the challenges faced by PAC techniques and offers a forward-looking perspective on their future development.

Keywords

Pressure-assisted / crystallization / thermal treatment / metal halide perovskite / functional devices

Cite this article

Download citation ▾
Yuan Yu, Huitian Du, Qiang Liu, Zhiyong Pang. Pressure-assisted crystallization techniques for high-performance metal halide perovskite devices. Microstructures, 2025, 5(3): 2025046 DOI:10.20517/microstructures.2024.144

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kojima A,Shirai Y.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.J Am Chem Soc2009;131:6050-1

[2]

Zhang P,Zhang T.Perovskite solar cells with ZnO electron-transporting materials.Adv Mater2018;30:1703737

[3]

Liu D.Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques.Nat Photon2014;8:133-8

[4]

Das S,Gu G.High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing.ACS Photonics2015;2:680-6

[5]

Ma C,Chen S.Interfacial defect passivation by multiple-effect molecule for efficient and stable perovskite solar cells.Solar Energy Mater Solar Cells2023;262:112499

[6]

Zheng X,Zhang Y.Co-deposition of hole-selective contact and absorber for improving the processability of perovskite solar cells.Nat Energy2023;8:462-72

[7]

Kim JY,Jung HS,Park NG.High-efficiency perovskite solar cells.Chem Rev2020;120:7867-918

[8]

Qu M,Cheng Y,Zhang C.Whole-device mass-producible perovskite photodetector based on laser-induced graphene electrodes.Adv Opt Mater2022;10:2201741

[9]

Zhan Y,Peng J.Nacre inspired robust self-encapsulating flexible perovskite photodetector.Nano Energy2022;98:107254

[10]

Zhu BS,Song YH.Ultrabright and efficient green perovskite light-emitting diodes enabled by well-crystallized dense CsPbBr3 nanocubes.Nano Lett2024;24:14750-7

[11]

Liu L,Xu X,Gao Z.High sensitivity X-ray detectors with low degradation based on deuterated halide perovskite single crystals.Adv Mater2024;36:e2406443

[12]

Wei H,Liu J.Thermally and mechanically stable perovskite artificial synapse as tuned by phase engineering for efferent neuromuscular control.Nano Lett2024;24:9311-21

[13]

Wang J,Liu H.Tunable spin characteristic properties in spin valve devices based on hybrid organic-inorganic perovskites.Adv Mater2019;31:e1904059

[14]

Ashley MJ,Hedderick KR,Ross MB.Templated synthesis of uniform perovskite nanowire arrays.J Am Chem Soc2016;138:10096-9

[15]

Tang S,Zheng X.Composition engineering in doctor-blading of perovskite solar cells.Adv Energy Mater2017;7:1700302

[16]

Zhang Y,Liu S.Composition engineering of perovskite single crystals for high-performance optoelectronics.Adv Funct Mater2023;33:2210335

[17]

Yu JC,Dunn CJ.High-performance and stable semi-transparent perovskite solar cells through composition engineering.Adv Sci2022;9:e2201487

[18]

Li Q,Pan W.High-pressure band-gap engineering in lead-free Cs2AgBiBr6 double perovskite.Angew Chem Int Ed2017;56:15969-73

[19]

Ren X,Ahmad AS.Pressure-induced phase transition and band gap engineering in propylammonium lead bromide perovskite.J Phys Chem C2019;123:15204-8

[20]

Francisco-López A,Weber OJ.Pressure-induced locking of methylammonium cations versus amorphization in hybrid lead iodide perovskites.J Phys Chem C2018;122:22073-82

[21]

Wang Y,Yang W.Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite.J Am Chem Soc2015;137:11144-9

[22]

Yuan Y,Ma X.Large band gap narrowing and prolonged carrier lifetime of (C4H9NH3)2PbI4 under high pressure.Adv Sci2019;6:1900240 PMCID:PMC6685472

[23]

Wang Y.Unravelling the effects of pressure-induced suppressed electron-hole recombination in CsPbBr3 perovskite: time-domain ab initio analysis.J Phys Chem Lett2019;10:4354-61

[24]

Sarkar G.Effects of lattice compression on halogen ion diffusion dynamics in mixed halide perovskites.ACS Appl Energy Mater2024;7:6376-83

[25]

Vishnoi P.Temperature and pressure induced structural transitions of lead iodide perovskites.J Mater Chem A2023;12:19-37

[26]

Capitani F,Caramazza S.High-pressure behavior of methylammonium lead iodide (MAPbI3) hybrid perovskite.J Appl Phys2016;119:185901

[27]

Morozova NV,Korobeinikov IV,Semenova OI.Manipulating the phase stability of a halide perovskite, CH3NH3PbI3 by high-pressure cycling.J Alloys Compd2024;988:174305

[28]

Wang H,Yang K.The self-healing and robust photostability of (PEA)2PbI4 perovskite via pressure-induced amorphization and recrystallization.Opt Mater2024;152:115449

[29]

Nie W,Blancon JC.Critical role of interface and crystallinity on the performance and photostability of perovskite solar cell on nickel oxide.Adv Mater2018;30:1703879

[30]

Shao S,Duim H.Enhancing the crystallinity and perfecting the orientation of formamidinium tin iodide for highly efficient Sn-based perovskite solar cells.Nano Energy2019;60:810-6

[31]

Ahmadian-yazdi M,Cai Z.Unveiling heavy heterovalent doping-modulated microstructure and thermoelectric performance in bulk hybrid perovskite single crystals.Chem Eng J2024;487:150477

[32]

Zhou B,Wang Y.A scalable H2O-DMF-DMSO solvent synthesis of highly luminescent inorganic perovskite-related cesium lead bromides.Adv Opt Mater2021;9:2001435

[33]

Manjunatha SN,Jeng M.The Characteristics of perovskite solar cells fabricated using DMF and DMSO/GBL solvents.J Electron Mater2020;49:6823-8

[34]

Zhang F,Song J,Zeng P.Sec-butyl alcohol assisted pinhole-free perovskite film growth for high-performance solar cells.J Mater Chem A2016;4:3438-45

[35]

Xiao M,Huang W.A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells.Angew Chem Int Ed2014;53:9898-903

[36]

Chen J,Li Z,Hao Y.Mixed antisolvents assisted treatment of perovskite for photovoltaic device efficiency enhancement.Org Electron2018;56:59-67

[37]

Li X,Yi C.Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides.Nat Chem2015;7:703-11

[38]

Wu Z,Juarez-Perez EJ.Improved efficiency and stability of perovskite solar cells induced by C=O functionalized hydrophobic ammonium-based additives.Adv Mater2018;30:1703670

[39]

Ahn N,Jang IH,Choi M.Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide.J Am Chem Soc2015;137:8696-9

[40]

Noel NK,Stranks SD.Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites.ACS Nano2014;8:9815-21

[41]

Xiao Z,Bi C,Yuan Y.Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement.Adv Mater2014;26:6503-9

[42]

Xie FX,Su H.Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells.ACS Nano2015;9:639-46

[43]

Liu J,He X.Improved crystallization of perovskite films by optimized solvent annealing for high efficiency solar cell.ACS Appl Mater Interfaces2015;7:24008-15

[44]

Gao L,Li C.Large-area high-efficiency perovskite solar cells based on perovskite films dried by the multi-flow air knife method in air.J Mater Chem A2017;5:1548-57

[45]

Zhong J,Ding L.Blade-coating perovskite films with diverse compositions for efficient photovoltaics.Energy Environ Mater2021;4:277-83

[46]

Li Z,Wang Z.Ammonia for post-healing of formamidinium-based Perovskite films.Nat Commun2022;13:4417 PMCID:PMC9338283

[47]

Su J,Ye X.Efficient Perovskite solar cells prepared by hot air blowing to ultrasonic spraying in ambient air.ACS Appl Mater Interfaces2019;11:10689-96

[48]

Zhang Z,Deng L.Hot-air treatment-regulated diffusion of LiTFSI to accelerate the aging-induced efficiency rising of perovskite solar cells.ACS Appl Mater Interfaces2022;14:4378-88

[49]

Meng K,Xiao M.Humidity-insensitive, large-area-applicable, hot-air-assisted ambient fabrication of 2D perovskite solar cells.Adv Mater2023;35:e2209712

[50]

Xing R,Wang D.Flexible self-powered weak light detectors based on ZnO/CsPbBr3/γ-CuI heterojunctions.ACS Appl Mater Interfaces2022;14:40093-101

[51]

Zhu F,Cui D.A general strategy for ordered carrier transport of quasi-2D and 3D Perovskite films for giant self-powered photoresponse and ultrahigh stability.Nanomicro Lett2023;15:115 PMCID:PMC10149430

[52]

Witt C,Ramming P,Moos R.How the microstructure of MAPbI3 powder impacts pressure-induced compaction and optoelectronic thick-film properties.J Phys Chem C2022;126:15424-35

[53]

Liu L,Feng X.Energy transfer assisted fast X-ray detection in direct/indirect hybrid perovskite wafer.Adv Sci2022;9:e2103735 PMCID:PMC9130882

[54]

Shi Y,Ma Z,Wang K.Structural regulation and optical behavior of three-dimensional metal halide perovskites under pressure.J Mater Chem C2020;8:12755-67

[55]

Liu G,Yang W.Pressure engineering of photovoltaic perovskites.Mater Today2019;27:91-106

[56]

Wang N,Wang S.Pressure engineering on perovskite structures, properties, and devices.Adv Funct Mater2024;34:2315918

[57]

Li N,Xie S.High-performance and self-powered X-ray detectors made of smooth perovskite microcrystalline films with 100 μm grains.Angew Chem Int Ed2023;62:e202302435

[58]

Liu Y,Dou Y.Formamidinium-based perovskite solar cells with enhanced moisture stability and performance via confined pressure annealing.J Phys Chem C2020;124:12249-58

[59]

Shrestha S,Matt GJ.High-performance direct conversion X-ray detectors based on sintered hybrid lead triiodide perovskite wafers.Nat Photon2017;11:436-40

[60]

Li WG,Huang YH.Ultrasound-assisted crystallization enables large-area perovskite quasi-monocrystalline film for high-sensitive X-ray detection and imaging.Adv Mater2023;35:e2210878

[61]

Zhang HJ,Zheng X.Improved performance of all-inorganic perovskite light-emitting diodes via nanostructured stamp imprinting.Chemphyschem2023;24:e202200860

[62]

Mosconi E.Mobile ions in organohalide perovskites: interplay of electronic structure and dynamics.ACS Energy Lett2016;1:182-8

[63]

Yang RX,da Silva EL,Walsh A.Spontaneous octahedral tilting in the cubic inorganic cesium halide perovskites CsSnX3 and CsPbX3 (X = F, Cl, Br, I).J Phys Chem Lett2017;8:4720-6

[64]

Fabini DH,Kanatzidis MG.The underappreciated lone pair in halide perovskites underpins their unusual properties.MRS Bull2020;45:467-77

[65]

Reyes-Martinez MA,Saidaminov MI.Time-dependent mechanical response of APbX3 (A = Cs, CH3NH3; X = I, Br) single crystals.Adv Mater2017;29:1606556

[66]

Rakita Y,Kedem NK,Cahen D.Mechanical properties of APbX3 (A = Cs or CH3NH3; X = I or Br) perovskite single crystals.MRS Commun2015;5:623-9

[67]

Li M,Li W.Oriented 2D Perovskite wafers for anisotropic X-ray detection through a fast tableting strategy.Adv Mater2022;34:e2108020

[68]

Witt C,Leupold N.Impact of pressure and temperature on the compaction dynamics and layer properties of powder-pressed methylammonium lead halide thick films.ACS Appl Electron Mater2020;2:2619-28

[69]

Matsushima T,Qin C.Morphological control of organic-inorganic perovskite layers by hot isostatic pressing for efficient planar solar cells.J Mater Chem A2015;3:17780-7

[70]

Mayer A,Runkel M.Relevance of processing parameters for grain growth of metal halide perovskites with nanoimprint.Appl Phys A2021;127:4830

[71]

Dunlap-shohl WA,Mitzi DB.Interfacial effects during rapid lamination within MAPbI3 thin films and solar cells.ACS Appl Energy Mater2019;2:5083-93

[72]

Mayer A,Doukkali Z.Upgrading of methylammonium lead halide perovskite layers by thermal imprint.Appl Phys A2021;127:4366

[73]

Moon J,Alahbakhshi M.Surface energy-driven preferential grain growth of metal halide perovskites: effects of nanoimprint lithography beyond direct patterning.ACS Appl Mater Interfaces2021;13:5368-78

[74]

Palmer JE,Smith HI.Grain growth and grain size distributions in thin germanium films.J Appl Phys1987;62:2492-7

[75]

Thompson CV.Grain growth in thin films.Annu Rev Mater Sci1990;20:245-68

[76]

Thompson CV.Structure evolution during processing of polycrystalline films.Annu Rev Mater Sci2000;30:159-90

[77]

Mayer A,Runkel M.Direct patterning of methylammonium lead bromide perovskites by thermal imprint.Appl Phys A2022;128:5521

[78]

Fu X,Lian G.High-quality CH3NH3PbI3 films obtained via a pressure-assisted space-confined solvent-engineering strategy for ultrasensitive photodetectors.Nano Lett2018;18:1213-20

[79]

Thompson C.Texture development in polycrystalline thin films.Mater Sci Eng B1995;32:211-9

[80]

Thompson C.Grain growth in polycrystalline thin films of semiconductors.Interface Sci1998;6:85-93

[81]

Wang T,Huang L.MAPbI3 quasi-single-crystal films composed of large-sized grains with deep boundary fusion for sensitive vis-NIR photodetectors.ACS Appl Mater Interfaces2020;12:38314-24

[82]

Zhang L,Gao Y.Uniaxially oriented FAxMA1-xPbI3 films with low intragrain and structural defects for self-powered photodetectors.J Mater Chem C2022;10:9546-53

[83]

Zheng L,Hou Y.A universal all-solid synthesis for high throughput production of halide perovskite.Nat Commun2022;13:7399 PMCID:PMC9715688

[84]

Zhang H,Hao Y,Zhang F.Unified crystal phase control with MACl for inducing single-crystal-like perovskite thin films in high-pressure fusion toward high efficiency perovskite solar cell modules.Small2024;20:e2400173

[85]

Zhang J,Li S.Recrystallization behaviour of cubic boron nitride under high pressure.J Eur Ceram Soc2021;41:132-8

[86]

Yin T,Chong WK.High-pressure-induced comminution and recrystallization of CH3NH3PbBr3 nanocrystals as large thin nanoplates.Adv Mater2018;30:1705017

[87]

Lee KJ,Wang Y.Gigantic suppression of recombination rate in 3D lead-halide perovskites for enhanced photodetector performance.Nat Photon2023;17:236-43

[88]

Shao Y,Li T.Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films.Energy Environ Sci2016;9:1752-9

[89]

Sherkar TS,Gil-Escrig L.Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions.ACS Energy Lett2017;2:1214-22 PMCID:PMC5438194

[90]

Luo J,Yang H.A pressure process for efficient and stable perovskite solar cells.Nano Energy2020;77:105063

[91]

Chun DH,Chai SU.Grain boundary healing of organic-inorganic halide perovskites for moisture stability.Nano Lett2019;19:6498-505

[92]

Lanaghan CL,Coons T.Understanding process-structure relationships during lamination of halide perovskite interfaces.ACS Appl Mater Interfaces2024;16:58657-67

[93]

Yang B,Zeng P,Ou Q.Tightly compacted perovskite laminates on flexible substrates via hot-pressing.Appl Sci2020;10:1917

[94]

Zhang W,Liu X,Li X.Ethyl acetate green antisolvent process for high-performance planar low-temperature SnO2-based perovskite solar cells made in ambient air.Chem Eng J2020;379:122298

[95]

Wang T,Huang L.A crystal-growth boundary-fusion strategy to prepare high-quality MAPbI3 films for excellent Vis-NIR photodetectors.Nano Energy2019;64:103914

[96]

Huang L,Tang X.Toward efficient perovskite solar cells by planar imprint for improved perovskite film quality and granted bifunctional barrier.J Mater Chem A2021;9:16178-86

[97]

Chen H,Tang W.A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules.Nature2017;550:92-5

[98]

Yu Y,Wang T.All-round performance improvement of semitransparent perovskite solar cells by a pressure-assisted method.J Mater Chem C2021;9:15056-64

[99]

Zhang H,Hao Y.Realization of ultra-flat perovskite films with surprisingly large-grain distribution using high-pressure cooking.Chem Eng J2022;445:136803

[100]

Zhu F,Yu B.Pressure-enhanced vertical orientation and compositional control of ruddlesden-popper perovskites for efficient and stable solar cells and self-powered photodetectors.ACS Appl Mater Interfaces2022;14:1526-36

[101]

Li T,Mitzi DB.Bifacial perovskite solar cells via a rapid lamination process.ACS Appl Energy Mater2020;3:9493-7

[102]

Gan S,Li C,Li L.Bifacial perovskite solar cells: a universal component that goes beyond albedo utilization.Sci Bull2023;68:2247-67

[103]

Yadavalli SK,Palmer J.Lamination of >21% efficient perovskite solar cells with independent process control of transport layers and interfaces.ACS Appl Mater Interfaces2024;16:16040-9

[104]

Dong N,Lian G.Solvent-assisted thermal-pressure strategy for constructing high-quality CH3NH3PbI3-xClx films as high-performance perovskite photodetectors.ACS Appl Mater Interfaces2018;10:8393-8

[105]

Zhou H,Grice CR.Pressure-assisted annealing strategy for high-performance self-powered all-inorganic perovskite microcrystal photodetectors.J Phys Chem Lett2018;9:4714-9

[106]

Shang M,Lv S.“Visible” phase separation of MAPbI3/δ-FAPbI3 films for high-performance and stable photodetectors.Adv Mater Inter2021;8:2100266

[107]

Huang L,Zhu F.Spin-coating thermal-pressed strategy for the preparation of inorganic perovskite quasi-single-crystal thin films with giant single-/two-photon responses.Nano Energy2022;92:106719

[108]

Stoumpos CC,Kanatzidis MG.Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties.Inorg Chem2013;52:9019-38

[109]

Yang B,Wu H.Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging.Nat Commun2019;10:1989 PMCID:PMC6491557

[110]

Liu W,Zhu J.PbI2-DMSO assisted in situ growth of perovskite wafers for sensitive direct X-ray detection.Adv Sci2022;10:e2204512 PMCID:PMC9811467

[111]

Wu J,Feng A.Self-powered FA0.55MA0.45PbI3 single-crystal perovskite X-ray detectors with high sensitivity.Adv Funct Mater2022;32:2109149

[112]

Wang W,Qi H.Electronic-grade high-quality perovskite single crystals by a steady self-supply solution growth for high-performance X-ray detectors.Adv Mater2020;32:e2001540

[113]

Stranks SD.Metal-halide perovskites for photovoltaic and light-emitting devices.Nat Nanotechnol2015;10:391-402

[114]

Zhmakin A.Enhancement of light extraction from light emitting diodes.Phys Rep2011;498:189-241

[115]

Zhu H,Meng F.Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors.Nat Mater2015;14:636-42

[116]

Fu Y,Schrader AW.Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability.Nano Lett2016;16:1000-8

[117]

Zhang Q,Liu X,Xiong Q.Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers.Nano Lett2014;14:5995-6001

[118]

Meng K,Wu L.Two-dimensional organic-inorganic hybrid perovskite photonic films.Nano Lett2016;16:4166-73

[119]

Zhang H,Chen Y.Continuous-wave vertical cavity surface-emitting lasers based on single crystalline lead halide perovskites.Adv Opt Mater2021;9:2001982

[120]

Pourdavoud N,Mayer A.Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites.Adv Mater2017;29:1605003

[121]

Pourdavoud N,Buchmüller M.Distributed feedback lasers based on MAPbBr3.Adv Mater Technol2018;3:1700253

[122]

Shao Z,Li Z.A scalable methylamine gas healing strategy for high-efficiency inorganic perovskite solar cells.Angew Chem Int Ed2019;58:5587-91

[123]

Zhuang J,Kang B.Rapid surface reconstruction in air-processed perovskite solar cells by blade coating.Adv Mater2024;36:e2309869

AI Summary AI Mindmap
PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/