Emerging perovskite color converter for next-generation wireless communications

Ruifeng Liu , Zijun Yan , Tingwei Lu , Guolong Chen , Jianghui Zheng , Shuli Wang , Yue Lin , Yuhan Su , Xinqin Liao , Yijun Lu , Hao-Chung Kuo , Zhong Chen , Tingzhu Wu

Microstructures ›› 2025, Vol. 5 ›› Issue (3) : 2025061

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (3) :2025061 DOI: 10.20517/microstructures.2024.142
Review

Emerging perovskite color converter for next-generation wireless communications

Author information +
History +
PDF

Abstract

Color converters are indispensable components in photoluminescence white-light devices. As optical wireless communication (OWC) systems leveraging solid-state lighting (SSL) continue to evolve, the development of next-generation color conversion materials has become a pressing priority to meet the stringent requirements for both high-quality illumination and high-speed data transmission. Halide perovskite quantum dots (PQDs) have emerged as promising candidates due to their exceptional color purity, high photoluminescence quantum yield, and fast response time. However, the commercial viability of PQD-based SSL-OWC systems is persistently impeded by several challenges, such as insufficient modulation bandwidth, inadequate long-term stability, and reliance on toxic elements. This review delves into the applications of PQD-based color converters within the realm of OWC. Initially, we conduct a theoretical investigation into the factors that influence the modulation bandwidth and transmission rate of PQD-based systems, revealing the significance of reducing PQD particle sizes in enhancing these parameters. Subsequently, we provide a comprehensive overview of optimization strategies across four critical aspects: the selection of excitation sources, the refinement of PQD structure and encapsulation, the deployment of modulation schemes and multiplexing techniques, and the advancement of lead-free PQD alternatives. Finally, we summarize different types of PQD-based OWC applications, including white-light-based visible light communication transmitters, underwater wireless optical communication transmitters, and color-converting photodetectors. These applications underscore the dual functionality of PQD layers in both illumination and the facilitation of wavelength-tunable OWC.

Keywords

Perovskite quantum dots / optical wireless communication / color converter / visible light communication / white-light system / solid-state lighting

Cite this article

Download citation ▾
Ruifeng Liu, Zijun Yan, Tingwei Lu, Guolong Chen, Jianghui Zheng, Shuli Wang, Yue Lin, Yuhan Su, Xinqin Liao, Yijun Lu, Hao-Chung Kuo, Zhong Chen, Tingzhu Wu. Emerging perovskite color converter for next-generation wireless communications. Microstructures, 2025, 5(3): 2025061 DOI:10.20517/microstructures.2024.142

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chow C.Recent advances and future perspectives in optical wireless communication, free space optical communication and sensing for 6G.J Lightwave Technol2024;42:3972-80

[2]

Khan L,Imran M,Hong C.6G wireless systems: a vision, architectural elements, and future directions.IEEE Access2020;8:147029-44

[3]

Haas H,Chen C.Introduction to indoor networking concepts and challenges in LiFi.J Opt Commun Netw2020;12:A190

[4]

Wei Z,Zhang J,Zhang J.Evolution of optical wireless communication for B5G/6G.Prog Quantum Electron2022;83:100398

[5]

Chi N,Wei Y.Visible light communication in 6G: advances, challenges, and prospects.IEEE Veh Technol Mag2020;15:93-102

[6]

Haas H,Wang Y.What is LiFi?.J Lightwave Technol2016;34:1533-44

[7]

Yu T,Lee W,Chang S.Visible light communication system technology review: devices, architectures, and applications.Crystals2021;11:1098

[8]

James S,Ahmed T.Micro-LED as a promising candidate for high-speed visible light communication.Appl Sci2020;10:7384

[9]

Lu T,Guo W.High-speed visible light communication based on micro-LED: a technology with wide applications in next generation communication.Opto Electron Sci2022;1:220020

[10]

Cho J,Kim JK.White light-emitting diodes: History, progress, and future.Laser Photonics Rev2017;11:1600147

[11]

Xiang H,Chen J,Zeng H.Research progress of full electroluminescent white light-emitting diodes based on a single emissive layer.Light Sci Appl2021;10:206 PMCID:PMC8492743

[12]

Yan Z,Sun Y.Atomic layer deposition technology for the development of high-quality, full-colour micro-LED displays.Next Nanotechnology2024;5:100051

[13]

Karpov S.Carrier localization in InGaN by composition fluctuations: implication to the “green gap”.Photon Res2017;5:A7

[14]

Anwar A,Johar M,Usman M.Recent progress in micro-LED-based display technologies.Laser Photonics Rev2022;16:2100427

[15]

Zhou X,Sher C.Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display.Prog Quantum Electron2020;71:100263

[16]

Cho J,Kim JK.Efficiency droop in light-emitting diodes: challenges and countermeasures.Laser Photonics Rev2013;7:408-21

[17]

Yang X,Wu T.An overview on the principle of inkjet printing technique and its application in micro-display for augmented/virtual realities.Opto Electron Adv2022;6:210123

[18]

Xu Y,Zhang H.White-light-emitting flexible display devices based on double network hydrogels crosslinked by YAG: Ce phosphors.J Mater Chem C2020;8:247-52

[19]

Manousiadis PP,Turnbull GA.Organic semiconductors for visible light communications.Philos Trans A Math Phys Eng Sci2020;378:20190186 PMCID:PMC7061996

[20]

Zhao S,Wang B,Li R.Inorganic halide perovskites for lighting and visible light communication.Photon Res2022;10:1039

[21]

Huang CY,Wu Y.Inorganic halide perovskite quantum dots: a versatile nanomaterial platform for electronic applications.Nanomicro Lett2022;15:16 PMCID:PMC9800676

[22]

Chaudhary B,Kim HS,Kim TH.Current status on synthesis, properties and applications of CsPbX3 (X = Cl, Br, I) perovskite quantum dots/nanocrystals.Nanotechnology2021;32:502007

[23]

Protesescu L,Bodnarchuk M.Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut.Nano Lett2015;15:3692-6 PMCID:PMC4462997

[24]

He X,Liang Z.Enhanced cyan photoluminescence and stability of CsPbBr3 quantum dots via surface engineering for white light-emitting diodes.Adv Opt Mater2024;12:2302726

[25]

Pathak S,Wisnivesky Rocca Rivarola F.Perovskite crystals for tunable white light emission.Chem Mater2015;27:8066-75

[26]

Ma Z,Zhang C.CsPb(Br/I)3 perovskite nanocrystals for hybrid gan-based high-bandwidth white light-emitting diodes.ACS Appl Nano Mater2021;4:8383-9

[27]

Song J,Li X,Dong Y.Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3).Adv Mater2015;27:7162-7

[28]

Xu X,Shi Z.Microwave-assisted in-situ synthesis of low-dimensional perovskites within metal-organic frameworks for optoelectronic applications.Appl Mater Today2024;40:102418

[29]

Dursun I,Parida MR.Perovskite nanocrystals as a color converter for visible light communication.ACS Photonics2016;3:1150-6

[30]

Ali A,Mithilesh K.Blue-laser-diode-based high CRI lighting and high-speed visible light communication using narrowband green-/red-emitting composite phosphor film.Appl Opt2020;59:5197-204

[31]

Wang Z,Cai Y.Encapsulation-enabled perovskite-PMMA films combining a micro-LED for high-speed white-light communication.ACS Appl Mater Interfaces2021;13:54143-51

[32]

Ali A,Li Y,Fu H.All-inorganic liquid phase quantum dots and blue laser diode-based white-light source for simultaneous high-speed visible light communication and high-efficiency solid-state lighting.Opt Express2022;30:35112-24

[33]

Xia M,Luo J.Ultrastable perovskite nanocrystals in all-inorganic transparent matrix for high-speed underwater wireless optical communication.Adv Opt Mater2021;9:2002239

[34]

Li X,Lyu W.Underwater quasi-omnidirectional wireless optical communication based on perovskite quantum dots.Opt Express2022;30:1709-22

[35]

Kang C,Liu G.High-speed colour-converting photodetector with all-inorganic CsPbBr3 perovskite nanocrystals for ultraviolet light communication.Light Sci Appl2019;8:94 PMCID:PMC6804731

[36]

Alshaibani S,Ashry I.Wide-field-of-view optical detectors for deep ultraviolet light communication using all-inorganic CsPbBr3 perovskite nanocrystals.Opt Express2023;31:25385-97

[37]

Leitão M,Yin L.Pump-power-dependence of a CsPbBr3-in-Cs4PbBr6 quantum dot color converter.Opt Mater Express2019;9:3504

[38]

Shan X,Lin R.Improvements of the modulation bandwidth and data rate of green-emitting CsPbBr3 perovskite quantum dots for Gbps visible light communication.Opt Express2023;31:2195-207

[39]

Mei S,Zhang W.High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication.ACS Appl Mater Interfaces2018;10:5641-8

[40]

Li X,Guan H.Highly stable CsPbBr3 quantum dots by silica-coating and ligand modification for white light-emitting diodes and visible light communication.Chem Eng J2021;419:129551

[41]

Singh K,Sadhu A.CsPbBr3 perovskite quantum-dot paper exhibiting a highest 3 dB bandwidth and realizing a flexible white-light system for visible-light communication.Photon Res2021;9:2341

[42]

Wang B,Yang X.Pressure-assisted cooling to grow ultra-stable Cs3Cu2l5 and CsCu2l3 single crystals for solid-state lighting and visible light communication.EcoMat2022;4:e12184

[43]

Wu T,Huang Y.Highly stable full-color display device with VLC application potential using semipolar μLEDs and all-inorganic encapsulated perovskite nanocrystal.Photon Res2021;9:2132

[44]

Kang C,Sinatra L.All-inorganic halide-perovskite polymer-fiber-photodetector for high-speed optical wireless communication.Opt Express2022;30:9823-40

[45]

Liang D,Lu S.Low-temperature solution synthesis of stable Cs3Cu2Br5 single crystals for visible light communications.ACS Appl Mater Interfaces2023;15:24622-8

[46]

Fu Y,Wangzhou Y.Wavelength division multiplexing visible light communication with wide incident angle enabled by perovskite quantum dots.Optics Communications2024;559:130427

[47]

Xu X,Shi Z.Stable and self-healing perovskite for high-speed underwater optical wireless communication.J Mater Chem C2024;12:3907-14

[48]

Qin F,Wang C.MAPbBr3@PbBr(OH) color converter for white light emission and underwater data transmission.ACS Appl Opt Mater2025;3:169-77

[49]

Yang J,Yin Y.Mitigating halide ion migration by resurfacing lead halide perovskite nanocrystals for stable light-emitting diodes.Chem Soc Rev2023;52:5516-40

[50]

Di J,Liu S.Recent progress of two-dimensional lead halide perovskite single crystals: crystal growth, physical properties, and device applications.EcoMat2020;2:e12036

[51]

Mo Q,Cai W,Yan D.Room temperature synthesis of stable zirconia-coated CsPbBr3 nanocrystals for white light-emitting diodes and visible light communication.Laser Photonics Rev2021;15:2100278

[52]

Chang Y,Li G.All-inorganic perovskite nanocrystals with a stellar set of stabilities and their use in white light-emitting diodes.ACS Appl Mater Interfaces2018;10:37267-76

[53]

Sadhu A,Chen L,Lin H.High bandwidth semipolar (20-21) micro-LED-based white light-emitting diodes utilizing perovskite quantum dots and organic emitters in color-conversion layers for visible light communication and solid-state lighting applications.Nanoscale2023;15:7715-21

[54]

Yao T,Gu L.In situ fabrication of multi-site contacted perovskite/organic hybrid color converter for indoor lighting and light communication.Laser Photonics Rev2025;19:2400758

[55]

Chang Y,Gunawan WH.4.343-Gbit/s green semipolar (20-21) μ-LED for high speed visible light communication.IEEE Photonics J2021;13:1-4

[56]

Xu F,Tao T.C-plane blue micro-LED With 1.53 GHz bandwidth for high-speed visible light communication.IEEE Electron Device Lett2022;43:910-3

[57]

Rashidi A,Aragon A,Feezell D.Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5 GHz modulation bandwidth.IEEE Electron Device Lett2018;39:520-3

[58]

Li Z,Liu B.High-speed micro-LEDs based on nano-engineered InGaN active region towards chip-to-chip interconnections.J Lightwave Technol2024;42:8760-70

[59]

Li Z,Hao Z.Bandwidth analysis of high-speed InGaN micro-LEDs by an equivalent circuit model.IEEE Electron Device Lett2023;44:785-8

[60]

Zhao S,Cai W.Efficiently luminescent and stable lead-free Cs3Cu2Cl5@silica nanocrystals for white light-emitting diodes and communication.Advanced Optical Materials2021;9:2100307

[61]

Luo X,Li Y.Triplet energy transfer from CsPbBr3 nanocrystals enabled by quantum confinement.J Am Chem Soc2019;141:4186-90

[62]

Qian H,Liu Z.Giant Kerr response of ultrathin gold films from quantum size effect.Nat Commun2016;7:13153 PMCID:PMC5062544

[63]

Ding P,Geng P.Strongly confined and spectrally tunable CsPbBr3 quantum dots for deep blue QD-LEDs.Adv Opt Mater2024;12:2302477

[64]

Boehme S,Burian M.Strongly confined CsPbBr3 quantum dots as quantum emitters and building blocks for rhombic superlattices.ACS Nano2023;17:2089-100 PMCID:PMC9933619

[65]

Wei Y,Lin J.An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs.Chem Soc Rev2019;48:310-50

[66]

Triana M,Zhang C,Wu S.Luminescent nanomaterials for energy-efficient display and healthcare.ACS Energy Lett2022;7:1001-20

[67]

Li S,Wang W.CsPbX3 (X = Cl, Br, I) perovskite quantum dots embedded in glasses: recent advances and perspectives.Chem Eng J2022;434:134593

[68]

Chen S,Zheng S,Chen D.Efficient and stable perovskite white light-emitting diodes for backlit display.Adv Funct Mater2023;33:2213442

[69]

Sun K,Fang X.Three-dimensional direct lithography of stable perovskite nanocrystals in glass.Science2022;375:307-10

[70]

Lin X,Zhu J.Room-temperature coherent optical manipulation of hole spins in solution-grown perovskite quantum dots.Nat Nanotechnol2023;18:124-30

[71]

Wang Z,Li J.Synthesis and optical wireless communication application of high efficiency extreme blue CsPbBr3 nanoplates.J Mater Chem C2024;12:5370-6

[72]

Yan Z,Yang X.Perovskite quantum dot color conversion micro-LEDs: progress in stability and patterning.Opto-Electron Eng2024;7:240088.

[73]

Zhang C,Chen H.Light diffusing, down-converting perovskite-on-polymer microspheres.J Mater Chem C2019;7:6527-33

[74]

Zhu S,Shan X.High-speed long-distance visible light communication based on multicolor series connection micro-LEDs and wavelength division multiplexing.Photon Res2022;10:1892

[75]

Park J,Park S,Pyo S.Modeling and analysis on radio interference of ofdm waveforms for coexistence study.IEEE Access2019;7:35132-47

[76]

Yoshida K,Haas H,Samuel I.RGB-single-chip OLEDs for high-speed visible-light communication by wavelength-division multiplexing.Adv Sci (Weinh)2024;11:e2404576 PMCID:PMC11653681

[77]

Kim D,Jung S.Visible-Light communication with lighting: RGB wavelength division multiplexing OLEDs/OPDs platform.Adv Mater2024;36:e2309416

[78]

Lu T,Lee T.Experimental investigation of high-speed WDM-visible light communication using blue, green, and red InGaN µLEDs.Opt Lett2024;49:4697-700

[79]

Wang Z,Lin R.Vertical stack integration of blue and yellow InGaN micro-LED arrays for display and wavelength division multiplexing visible light communication applications.Opt Express2022;30:44260-9

[80]

Hu L,Hwangbo S.Flexible micro-LED display and its application in Gbps multi-channel visible light communication.NPJ Flex Electron2022;6:234

[81]

Zhang F,Shi Z.Recent advances and opportunities of lead-free perovskite nanocrystal for optoelectronic application.Energy Mater Adv2021;2021:2021/5198145

[82]

Fan Q,Ma J.Lead-free halide perovskite nanocrystals: crystal structures, synthesis, stabilities, and optical properties.Angew Chem Int Ed Engl2020;59:1030-46

[83]

Ma Z,Lin S.Recent advances and opportunities of eco-friendly ternary copper halides: a new superstar in optoelectronic applications.Adv Mater2023;35:e2300731

[84]

Li Y,Tewari N.Progress in copper metal halides for optoelectronic applications.Mater Chem Front2021;5:4796-820

[85]

Shi Y,Mo Q.Highly efficient copper-based halide single crystals with violet emission for visible light communication.Chem Commun (Camb)2023;59:583-6

[86]

Ghaderi MR.LiFi and hybrid WiFi/LiFi indoor networking: from theory to practice.Opt Switching Networking2023;47:100699

[87]

Zeng Z,Wang Y,Haas H.Realistic indoor hybrid WiFi and OFDMA-based LiFi networks.IEEE Trans Commun2020;68:2978-91

[88]

Badeel R,Hanapi Z.A review on LiFi network research: open issues, applications and future directions.Appl Sci2021;11:11118

[89]

Xiao H,Xu B,Wang L.High-brightness green CdSe/ZnS quantum dots stimulated by solar-blind deep-ultraviolet light in optical wireless communications.Opt Lett2024;49:3596-9

[90]

Memon M,Jia H.Quantum dots integrated deep-ultraviolet micro-LED array toward solar-blind and visible light dual-band optical communication.IEEE Electron Device Lett2023;44:472-5

[91]

Zhang Y,Han T.Aggregation-induced emission luminogens as color converters for visible-light communication.ACS Appl Mater Interfaces2018;10:34418-26

[92]

Yang X,Yu Y.Enhancing communication bandwidths of organic color converters using nanopatterned hyperbolic metamaterials.J Lightwave Technol2018;36:1862-7

[93]

Sajjad M,Chun H.Novel fast color-converter for visible light communication using a blend of conjugated polymers.ACS Photonics2015;2:194-9

[94]

Yang X,Dai Y.100 m full-duplex underwater wireless optical communication based on blue and green lasers and high sensitivity detectors.Opt Commun2021;498:127261

[95]

Spagnolo G, Cozzella L, Leccese F. Underwater optical wireless communications: overview.Sensors (Basel)2020;20:2261 PMCID:PMC7219055

[96]

Ali M,Li Y.Recent trends in underwater visible light communication (UVLC) systems.IEEE Access2022;10:22169-225

[97]

Zhu S,Liu X,Tian P.Recent progress in and perspectives of underwater wireless optical communication.Prog Quantum Electron2020;73:100274

[98]

Shi J,Li Z.Optimal adaptive waveform design utilizing an end-to-end learning-based pre-equalization neural network in an UVLC system.J Lightwave Technol2023;41:1626-36

[99]

Chen H,Huang F,Tang X.Laser-driven high-brightness green light for underwater wireless optical communication.Adv Opt Mater2022;10:2200836

[100]

Yang Y,Wu F.High wall-plug efficiency algan deep ultraviolet micro-leds enabled by an etched reflective array design for high data transmission.IEEE Trans Electron Devices2024;71:3069-76

[101]

Maclure D,McKendry J.Hundred-meter Gb/s deep ultraviolet wireless communications using AlGaN micro-LEDs.Opt Express2022;30:46811-21

[102]

Li D,Qian Z.Deep-ultraviolet micro-LEDs exhibiting high output power and high modulation bandwidth simultaneously.Adv Mater2022;34:e2109765

[103]

Eisaman M,Migdall A.Invited review article: single-photon sources and detectors.Rev Sci Instrum2011;82:071101

[104]

Liang Y.Progress in efficient doping of high aluminum-containing group III-nitrides.Appl Phys Rev2018;5:011107

[105]

Shi L.Comparative study of silicon-based ultraviolet photodetectors.IEEE Sensors J2012;12:2453-9

[106]

Zhou Y,Uddin M,Ni Z.Self-powered perovskite photon-counting detectors.Nature2023;616:712-8 PMCID:PMC11565494

[107]

Chen F,Shang C.Ultrafast response of centimeter scale thin CsPbBr3 single crystal film photodetector for optical communication.Small2022;18:e2203565

[108]

Pan X,Zhou H.Single-layer ZnO hollow hemispheres enable high-performance self-powered perovskite photodetector for optical communication.Nanomicro Lett2021;13:70 PMCID:PMC8187591

[109]

Shen C,Zhang J.High performance and stable pure-blue quasi-2D perovskite light-emitting diodes by multifunctional zwitterionic passivation engineering.Adv Photon2024;6

[110]

Ren A,Dai L.High-bandwidth perovskite photonic sources on silicon.Nat Photon2023;17:798-805

[111]

Bao C,Yang J.Bidirectional optical signal transmission between two identical devices using perovskite diodes.Nat Electron2020;3:156-64 PMCID:PMC7100905

AI Summary AI Mindmap
PDF

263

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/