Exploring the underlying mechanisms of ferroelectric behavior in metal-doped aluminum nitride: an in-depth review

Mohamed Saadi , Weijing Shao , Miaocheng Zhang , Haiming Qin , Cong Han , Youde Hu , Hao Zhang , Xinpeng Wang , Yi Tong

Microstructures ›› 2025, Vol. 5 ›› Issue (4) : 2025092

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (4) :2025092 DOI: 10.20517/microstructures.2024.136
Review

Exploring the underlying mechanisms of ferroelectric behavior in metal-doped aluminum nitride: an in-depth review

Author information +
History +
PDF

Abstract

This review explores the intricate relationship between metal doping and the polarization-switching dynamics of wurtzite-phase aluminum nitride (AlN) thin films. We examine how the dopant type, concentration, and resulting crystal structure affect the ferroelectric characteristics of AlN. Particular emphasis is placed on scandium-doped AlN (AlScN), a leading candidate for next-generation ferroelectric applications. We investigate the fundamental mechanisms underlying polarization switching, emphasizing the roles of local chemical interactions, structural modifications, and domain wall dynamics. In addition, we present a comparative analysis of key synthesis techniques - including magnetron sputtering, molecular beam epitaxy, atomic layer deposition, and pulsed laser deposition - highlighting their respective advantages and limitations in fabricating high-quality ferroelectric films. By elucidating the core principles governing ferroelectricity in doped AlN, this review provides valuable insights for the design and optimization of advanced ferroelectric devices aimed at improving performance and energy efficiency.

Keywords

Ferroelectricity / AlScN / AlN / wurtzite / materials science

Cite this article

Download citation ▾
Mohamed Saadi, Weijing Shao, Miaocheng Zhang, Haiming Qin, Cong Han, Youde Hu, Hao Zhang, Xinpeng Wang, Yi Tong. Exploring the underlying mechanisms of ferroelectric behavior in metal-doped aluminum nitride: an in-depth review. Microstructures, 2025, 5(4): 2025092 DOI:10.20517/microstructures.2024.136

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yasuoka S,Tateyama A.Effects of deposition conditions on the ferroelectric properties of (Al1-xScx)N thin films.J Appl Phys2020;128:114103

[2]

Lin BT,Shieh J.Ferroelectric AlN ultrathin films prepared by atomic layer epitaxy, In Proceedings Behavior and Mechanics of Multifunctional Materials XIII; 2019.

[3]

Hasegawa K,Ohsawa T,Ohashi N.Full polarization reversal at room temperature in unsubstituted AlN.Appl Phys Lett2023;123:192903

[4]

Skidmore CH,Hayden J.Proximity ferroelectricity in wurtzite heterostructures.Nature2025;637:574-9

[5]

Kim KH,Zhang Y.Multistate, ultrathin, back-end-of-line-compatible AlScN ferroelectric diodes.ACS Nano2024;18:15925-34

[6]

Schönweger G,Islam MR.In-grain ferroelectric switching in sub-5 nm Thin Al0.74Sc0.26N films at 1 V.Adv Sci2023;10:e2302296 PMCID:PMC10477852

[7]

Zheng JX,Esteves G.Ferroelectric behavior of sputter deposited Al0.72Sc0.28N approaching 5 nm thickness.Appl Phys Lett2023;122:222901

[8]

Liu X,Kim KH.Post-CMOS compatible aluminum scandium nitride/2D channel ferroelectric field-effect-transistor memory.Nano Lett2021;21:3753-61

[9]

Hu Z,Rai RK.Demonstration of highly scaled AlScN ferroelectric diode memory with storage density > 100 Mbit/mm2.arXiv2025;2504.13283

[10]

Pradhan DK,Kim G.A scalable ferroelectric non-volatile memory operating at 600 °C.Nat Electron2024;7:348-55

[11]

Dai X,Jiang C.Artificial synapse based on a tri-layer AlN/AlScN/AlN stacked memristor for neuromorphic computing.Nano Energy2024;124:109473

[12]

Nomoto K,Nguyen TS.AlScN/GaN HEMTs with 4 A/mm on-current and maximum oscillation frequency >130 GHz.Appl Phys Express2025;18:016506.

[13]

Zhao C,Wang Z.Boron-doped III-V semiconductors for Si-based optoelectronic devices.J Semicond2020;41:011301.

[14]

Cohen A,Cohen H.Local environment of Sc and Y dopant ions in aluminum nitride thin films.ACS Appl Electron Mater2024;6:853-61 PMCID:PMC10902843

[15]

Anggraini SA,Hirata K,Akiyama M.Polarity inversion of aluminum nitride thin films by using Si and MgSi dopants.Sci Rep2020;10:4369 PMCID:PMC7062775

[16]

Alam MN,Campanella H.Large piezoelectric response and ferroelectricity in Li and V/Nb/Ta Co-doped w-AlN.ACS Appl Mater Interfaces2021;13:944-54

[17]

Yokoyama T,Onda Y,Sasajima Y.Highly piezoelectric co-doped AlN thin films for wideband FBAR applications.IEEE Trans Ultrason Ferroelectr Freq Control2015;62:1007-15

[18]

Startt J,Sharma P.Unlocking AlN piezoelectric performance with earth-abundant dopants.Adv Elect Mater2023;9:2201187

[19]

Savant C,Nomoto K.Ferroelectric AlBN films by molecular beam epitaxy.Appl Phys Lett2024;125:072902

[20]

Anggraini SA,Yamada H.Investigating the piezoelectric response of Mg-Ti-doped-AlN thin films for sensor application. 2017 IEEE Sensors, Glasgow, UK, 29 October 2017 - 01 November 2017; pp. 1-3.

[21]

Eliseev EA,Maria JP,Gopalan V.Thermodynamic theory of proximity ferroelectricity.Phys Rev X2025;15:021058

[22]

Stutzmann M,Eickhoff M.Playing with polarity.Phys Stat Sol B2001;228:505-12

[23]

Calderon S 5th,Baksa SM.Atomic-scale polarization switching in wurtzite ferroelectrics.Science2023;380:1034-8

[24]

Maria JP.Data for "Proximity ferroelectricity in wurtzite heterostructures".Scholarsphere2024;

[25]

Drury D,Zakutayev A,Brennecka G.High-temperature ferroelectric behavior of Al0.7Sc0.3N.Micromachines2022;13:887 PMCID:PMC9227949

[26]

Zhu W,He F.Strongly temperature dependent ferroelectric switching in AlN, Al1-xScxN, and Al1-xBxN thin films.Appl Phys Lett2021;119:062901

[27]

Höglund C,Alling B.Wurtzite structure Sc1-xAlxN solid solution films grown by reactive magnetron sputter epitaxy: structural characterization and first-principles calculations.J Appl Phys2010;107:123515

[28]

Saha B,Naik GV.Development of epitaxial Al1-xScxN for artificially structured metal/semiconductor superlattice metamaterials: epitaxial AlxSc1-xN for artificially structured superlattice metamaterials.Phys Status Solidi B2015;252:251-9

[29]

Brien V.Correlation between the oxygen content and the morphology of AlN films grown by r.f. magnetron sputtering.J Crystal Growth2008;310:3890-5

[30]

Ye KH,Yeu IW,Choi J.Atomistic understanding of the ferroelectric properties of a wurtzite-structure (AlN)n/(ScN)m superlattice.Phys Rap Res2021;15:2100009

[31]

Dawber M,Littlewood PB.Depolarization corrections to the coercive field in thin-film ferroelectrics.J Phys Condens Matter2003;15:L393-8.

[32]

Hayden J,Xiong Y.Ferroelectricity in boron-substituted aluminum nitride thin films.Phys Rev Mater2021;5:044412

[33]

Ferri K,Zhu W.Ferroelectrics everywhere: ferroelectricity in magnesium substituted zinc oxide thin films.J App Phys2021;130:044101

[34]

Moriwake H,Taguchi A.A computational search for wurtzite-structured ferroelectrics with low coercive voltages.APL Mater2020;8:121102

[35]

Dai Y.Covalent-like bondings and abnormal formation of ferroelectric structures in binary ionic salts.Sci Adv2023;9:eadf8706 PMCID:PMC9858496

[36]

Scott JF.Applications of modern ferroelectrics.Science2007;315:954-9

[37]

He F,Hayden J.Frequency dependence of wake-up and fatigue characteristics in ferroelectric Al0.93B0.07N thin films.Acta Mater2024;266:119678

[38]

Zhu W,Hayden J.Wake-up in Al1-xBxN ferroelectric films.Adv Electron Mater2022;8:2100931

[39]

Yazawa K,Maria JP.Anomalously abrupt switching of wurtzite-structured ferroelectrics: simultaneous non-linear nucleation and growth model.Mater Horiz2023;10:2936-44

[40]

Momida H,Oguchi T.Strong enhancement of piezoelectric constants in ScxAl1-xN: first-principles calculations.AIP Adv2016;6:065006

[41]

Messi F,Rodkey N,Trassin M.Ferroelectric AlScN thin films with enhanced polarization and low leakage enabled by high-power impulse magnetron sputtering.APL Mater2025;13:051123

[42]

Sun W,Jin F,Zheng S.Temperature dependence in coercive field of ferroelectric AlScN integrated on Si substrate, In 2024 IEEE International Conference on IC Design and Technology (ICICDT). Singapore; 2024, pp. 1-4.

[43]

Hornsteiner J,Fischerauer G.Surface acoustic wave sensors for high-temperature applications, In Proceedings of the 1998 IEEE International Frequency Control Symposium, 1998; pp. 615-20.

[44]

Yazawa K,Zakutayev A.Reduced coercive field in epitaxial thin film of ferroelectric wurtzite Al0.7Sc0.3N.Appl Phys Lett2021;118:162903

[45]

Tasnádi F,Höglund C.Origin of the anomalous piezoelectric response in wurtzite ScxAl1-xN alloys.Phys Rev Lett2010;104:137601

[46]

Fichtner S,Lofink F,Wagner B.AlScN: a III-V semiconductor based ferroelectric.J Appl Phys2019;125:114103

[47]

Galsin JS.Chapter 1 - Crystal Structure of Solids. Solid State Physics. Elsevier; 2019. pp. 1-36.

[48]

Liu X,Wang D.Aluminum scandium nitride-based metal-ferroelectric-metal diode memory devices with high on/off ratios.Appl Phys Lett2021;118:202901

[49]

Wang J,Mertin S,Ayazi F.A high-kt2 switchable ferroelectric Al0.7Sc0.3N film bulk acoustic resonator. In 2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF), Keystone, CO, USA; 2020, pp. 1-3.

[50]

Herrera B,Giribaldi G,Rinaldi M.AlScN programmable ferroelectric micromachined ultrasonic transducer (FMUT). In 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Orlando, FL, USA; 2021, pp. 38-41.

[51]

Rassay S,Li C,Forgey C.Intrinsically switchable ferroelectric scandium aluminum nitride lamb-mode resonators.IEEE Electron Device Lett2021;42:1065-8

[52]

Zhang S,Fu WY,Moram MA.Tunable optoelectronic and ferroelectric properties in Sc-based III-nitrides.J App Phys2013;114:133510

[53]

Business Research Insights. Thin film piezoelectric devices market size, share, growth, trends and industry analysis, by type (AlN Thin Film, PZT Thin Film), by application (Consumer Electronics, Healthcare, Aerospace and Defense, Others), regional insights and forecast From 2025 to 2033 . Available from: https://www.businessresearchinsights.com/market-reports/thin-film-piezoelectric-devices-market-110756 [Last accessed on 28 Jul 2025].

[54]

Höglund C,Birch J,Czigány Z.Cubic Sc1-xAlxN solid solution thin films deposited by reactive magnetron sputter epitaxy onto ScN(111).J Appl Phys2009;105:113517

[55]

dos Santos RB,de Brito Mota F,Kakanakova-Georgieva A.Dopant species with Al-Si and N-Si bonding in the MOCVD of AlN implementing trimethylaluminum, ammonia and silane.J Phys D Appl Phys2015;48:295104

[56]

Taniyasu Y,Makimoto T.An aluminium nitride light-emitting diode with a wavelength of 210 nanometres.Nature2006;441:325-8

[57]

Bernardini F,Vanderbilt D.Spontaneous polarization and piezoelectric constants of III-V nitrides.Phys Rev B1997;56:R10024-7

[58]

Aubert T,Legrani O.In situ high-temperature characterization of AlN-based surface acoustic wave devices.J Appl Phys2013;114:014505

[59]

Aubert T,Assouar B,Genève D.Reliability of AlN/Sapphire bilayer structure for high-temperature SAW applications. In 2010 IEEE International Ultrasonics Symposium, San Diego, CA, USA; 2010, pp. 1490-3.

[60]

Akiyama M,Kano K,Takeuchi Y.Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering.Adv Mater2009;21:593-6

[61]

Deng R,Gall D.Optical phonon modes in Al1-xScxN.J Appl Phys2014;115:013506

[62]

Jin EN,Mock AL.Band alignment of ScxAl1-xN/GaN heterojunctions.ACS Appl Mater Interfaces2020;12:52192-200

[63]

Constantin C,Haider MB,Smith AR.ScGaN alloy growth by molecular beam epitaxy: evidence for a metastable layered hexagonal phase.Phys Rev B2004;70:239902

[64]

Moram MA.ScGaN and ScAlN: emerging nitride materials.J Mater Chem A2014;2:6042-50

[65]

Tholander C,Tasnádi F.Ab initio calculations and experimental study of piezoelectric Y In1-N thin films deposited using reactive magnetron sputter epitaxy.Acta Mater2016;105:199-206

[66]

Umeda K,Honda A,Kato T.Piezoelectric properties of ScAlN thin films for piezo-MEMS devices, In IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan; 2013, pp. 733-6.

[67]

Liauh WJ,Huang JL,Lin ZX.Microstructure and piezoelectric properties of reactively sputtered highly C-axis ScxAl1-xN thin films on diamond-like carbon/Si substrate.Surf Coat Technol2016;308:101-7

[68]

Talley KR,Mangum J.Implications of heterostructural alloying for enhanced piezoelectric performance of (Al,Sc)N.Phys Rev Mater2018;2:063802

[69]

Furuta K,Anggraini SA,Uehara M.First-principles calculations of spontaneous polarization in ScAlN.J Appl Phys2021;130:024104

[70]

Lu H,Petraru A,Fichtner S.Domain dynamics and resistive switching in ferroelectric Al1-xScxN thin film capacitors.Adv Funct Mater2024;34:2315169

[71]

Tybell T,Giamarchi T.Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.08)O3 thin films.Phys Rev Lett2002;89:097601

[72]

Wang D,Zhou P.On the surface oxidation and band alignment of ferroelectric Sc0.18Al0.82N/GaN heterostructures.Appl Surf Sci2023;628:157337

[73]

Dreyer CE,Van de Walle CG.Correct implementation of polarization constants in Wurtzite materials and impact on III-nitrides.Phys Rev X2016;6:021038

[74]

Satoh S,Shimatsu T.Crystal structure deformation and phase transition of AlScN thin films in whole Sc concentration range.J Appl Phys2022;132:025103

[75]

Petrich R,Tonisch K,Barth S.Investigation of ScAlN for piezoelectric and ferroelectric applications. In 2019 22nd European Microelectronics and Packaging Conference & Exhibition (EMPC), Pisa, Italy; 2019, pp. 1-5.

[76]

Denton AR.Vegard's law.Phys Rev A1991;43:3161-4

[77]

Koh YR,Wang B.Thermal boundary conductance across epitaxial metal/sapphire interfaces.Phys Rev B2020;102:205304

[78]

Milyutin E,Martin D.Sputtering of (001)AlN thin films: control of polarity by a seed layer.J Vac Sci Technol B2010;28:L61-3

[79]

Yasuoka S,Ota R.Tunable ferroelectric properties in Wurtzite (Al0.8Sc0.2)N via crystal anisotropy.ACS Appl Electron Mater2022;4:5165-70

[80]

Farrer N.Properties of hexagonal ScN versus wurtzite GaN and InN.Phys Rev B2002;66:201203

[81]

Yazawa K,Gorai P,Zakutayev A.Local chemical origin of ferroelectric behavior in wurtzite nitrides.J Mater Chem C2022;10:17557-66

[82]

Murray JL.The Al-Sc (aluminum-scandium) system.J Phase Equilib1998;19:380-4

[83]

Moriarty JL,Gordon RO.X-ray examination of some rare-earth-containing binary alloy systems.Acta Cryst1966;21:840-1

[84]

Gschneidner KA.The Alt-Sc (aluminum-scandium) system.Bull Alloy Phase Diagr1989;10:34-6

[85]

Schob O.AB compounds with Sc, Y and rare earth metals. I. Scandium and yttrium compounds with CrB and CsCl structure.Acta Cryst1965;19:214-24

[86]

Eymond S.Sc2Al with Ni2ln structure type.J Less Common Metals1969;19:441-3

[87]

Romano LT,O’keefe MA.Inversion domains in GaN grown on sapphire.Appl Phys Lett1996;69:2394-6

[88]

Northrup JE,Romano LT.Inversion domain and stacking mismatch boundaries in GaN.Phys Rev Lett1996;77:103-6

[89]

Dawber M.New developments in artificially layered ferroelectric oxide superlattices.MRS Bull2013;38:1048-55

[90]

Badylevich M,Afanas’ev VV,Fedorenko YG.Electronic structure of the interface of aluminum nitride with Si(100).J Appl Phys2008;104:093713

[91]

Wang D,Mondal S.Thickness scaling down to 5 nm of ferroelectric ScAlN on CMOS compatible molybdenum grown by molecular beam epitaxy.Appl Phys Lett2023;122:052101

[92]

Yasuoka S,Ota R.Enhancement of crystal anisotropy and ferroelectricity by decreasing thickness in (Al,Sc)N films.J Ceram Soc Japan2022;130:436-41

[93]

Janovec V.On the theory of the coercive field of single-domain crystals of BaTiO3.Czech J Phys1958;8:3-15

[94]

Ke C,Liu S.Depolarization induced III-V triatomic layers with tristable polarization states.Nanoscale Horiz2023;8:616-23

[95]

Mizuno T,Aida Y,Akiyama M.Germanium aluminum nitride thin films for piezo-MEMS devices. In 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan; 2017, pp. 1891-4.

[96]

Song Y,Esteves G.Thermal conductivity of aluminum scandium nitride for 5G mobile applications and beyond.ACS Appl Mater Interfaces2021;13:19031-41

[97]

Tagantsev AK.Comment on "Ab initio study of the spontaneous polarization of pyroelectric BeO".Phys Rev Lett1992;69:389

[98]

Posternak M,Catellani A.Ab initio study of the spontaneous polarization of pyroelectric BeO.Phys Rev Lett1990;64:1777-80

[99]

Martin RM.Comment on calculations of electric polarization in crystals.Phys Rev B1974;9:1998-9

[100]

Resta R.Theory of the electric polarization in crystals.Ferroelectrics1992;136:51-5

[101]

Bernardini F,Vanderbilt D.Accurate calculation of polarization-related quantities in semiconductors.Phys Rev B2001;63:193201

[102]

Yoo S,Neugebauer J.Microscopic origin of polarization charges at GaN/(Al,Ga)N interfaces.Phys Rev Appl2023;19:064037

[103]

Strak P,Sakowski K.Polarization spontaneous and piezo: fundamentals and their implementation in ab initio calculations.ArXiv2024;2407.01134

[104]

Uehara M,Yasuoka S.Lower ferroelectric coercive field of ScGaN with equivalent remanent polarization as ScAlN.Appl Phys Express2022;15:081003.

[105]

Lee C,Yazawa K,Zakutayev A.Emerging materials and design principles for wurtzite-type ferroelectrics.Matter2024;7:1644-59

[106]

Gall D,Järrendahl K.Electronic structure of ScN determined using optical spectroscopy, photoemission, and ab initio calculations.Phys Rev B2001;63:1251191-9

[107]

Gall D,Greene JE.Epitaxial Sc1-xTixN(001): optical and electronic transport properties.J Appl Phys2001;89:401-9

[108]

Fiorentini V,Ambacher O.Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures.Appl Phys Lett2002;80:1204-6

[109]

Wu J,Yu KM.Small band gap bowing in In1-xGaxN alloys.Appl Phys Lett2002;80:4741-3

[110]

Wolff N,Haas B.Atomic scale confirmation of ferroelectric polarization inversion in wurtzite-type AlScN.J Appl Phys2021;129:034103

[111]

Schönweger G,Islam MR.From fully strained to relaxed: epitaxial ferroelectric Al1-xScxN for III-N technology.Adv Funct Mater2022;32:2109632

[112]

Uehara M,Yasuoka S.Demonstration of ferroelectricity in ScGaN thin film using sputtering method.Appl Phys Lett2021;119:172901

[113]

Wang D,Wang B.Fully epitaxial ferroelectric ScGaN grown on GaN by molecular beam epitaxy.Appl Phys Lett2021;119:111902

[114]

Wang D,Mondal S,Hu M.Impact of dislocation density on the ferroelectric properties of ScAlN grown by molecular beam epitaxy.Appl Phys Lett2022;121:042108

[115]

Dinh DV,Geelhaar L.Lattice parameters of ScxAl1-xN layers grown on GaN(0001) by plasma-assisted molecular beam epitaxy.Appl Phys Lett2023;122:152103

[116]

Zhang D,Li J.MBE growth of ultra-thin GeSn film with high Sn content and its infrared/terahertz properties.J Alloys Compd2016;665:131-6

[117]

Zeng Y,Wang Y.High quality epitaxial piezoelectric and ferroelectric Wurtzite Al1-xScxN thin films.Small Methods2025;9:e2400722

[118]

Tang M,Cheng M.High-throughput screening thickness-dependent resistive switching in SrTiO3 thin films for robust electronic synapse.Adv Funct Mater2023;33:2213874

[119]

Yang Y,Zhou D.Effects of temperature on PO and resistivity of ScAlN film.Surf Eng2015;31:775-8

[120]

Zukauskaite A,Palisaitis J.Microstructure and dielectric properties of piezoelectric magnetron sputtered w-ScxAl1−xN thin films.J Appl Phys2012;111:093527

[121]

Pérez-Campos A,Garcia-Garcia FJ,Iriarte GF.Synthesis of ScAlN thin films on Si (100) substrates at room temperature.Microsyst Technol2018;24:2711-8

[122]

van der Wel BY,Aarnink AAI.Area-Selective low-pressure thermal atomic layer deposition of aluminum nitride.J Phys Chem C2023;127:17134-45

[123]

Bartram ME,Rogers JW.Nucleation and growth of aluminum nitride: self-limiting reactions and the regeneration of active sites using sequential exposures of trimethylaluminum and ammonia on silica at 600 K.Chem Mater1993;5:1424-30

[124]

Detavernier C,Deduytsche D.Thermal versus plasma-enhanced ALD: growth kinetics and conformality.ECS Trans2008;16:239

[125]

Bui HV,Wiggers FB,de Jong MP.Self-limiting growth and thickness- and temperature- dependence of optical constants of ALD AlN thin films.ECS J Solid State Sci Technol2014;3:101-6

[126]

Seppänen H,Etula J,Bouravleuv A.Aluminum nitride transition layer for power electronics applications grown by plasma-enhanced atomic layer deposition.Materials2019;12:406 PMCID:PMC6384632

[127]

Schilirò E,Di Franco S.Highly homogeneous current transport in ultra-thin aluminum nitride (AlN) epitaxial films on gallium nitride (GaN) deposited by plasma enhanced atomic layer deposition.Nanomaterials2021;11:3316 PMCID:PMC8709117

[128]

Samii R,Buttera SC.Synthesis and thermal study of hexacoordinated Aluminum(III) triazenides for use in atomic layer deposition.Inorg Chem2021;60:4578-87 PMCID:PMC8041287

[129]

Rouf P,Rönnby K.Hexacoordinated Gallium(III) triazenide precursor for epitaxial gallium nitride by atomic layer deposition.Chem Mater2021;33:3266-75

[130]

Pedersen H,Nepal N,Eddy CR Jr.Atomic layer deposition as the enabler for the metastable semiconductor InN and its alloys.Cryst Growth Des2023;23:7010-25 PMCID:PMC10557049

[131]

Seppänen H,Kauppinen C,Mizohata K.Effect of atomic layer annealing in plasma-enhanced atomic layer deposition of aluminum nitride on silicon.J Vac Sci Technol A2023;41:052401

[132]

Shih HY,Kao WC.Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing.Sci Rep2017;7:39717 PMCID:PMC5206640

[133]

Kao W,Yin Y,Chen M.High-quality AlN epilayers prepared by atomic layer deposition and large-area rapid electron beam annealing.Mater Chem Phys2023;304:127895

[134]

Available from: https://www.atomiclimits.com/alddatabase/ [Last accessed on 28 Jul 2025].

[135]

Nepal N,Hite JK.Growth and characterization of III-N ternary thin films by plasma assisted atomic layer epitaxy at low temperatures.Thin Solid Films2015;589:47-51

[136]

Tian L,Benz M.Aluminum nitride thin films deposited by hydrogen plasma enhanced and thermal atomic layer deposition.Surf Coat Technol2018;347:181-90

[137]

Ozgit C,Alevli M.Self-limiting low-temperature growth of crystalline AlN thin films by plasma-enhanced atomic layer deposition.Thin Solid Films2012;520:2750-5

[138]

Kot M,Naumann F.Comparison of plasma-enhanced atomic layer deposition AlN films prepared with different plasma sources.J Vac Sci Technol A2019;37:020913

[139]

Ligl J,Manz C.Metalorganic chemical vapor phase deposition of AlScN/GaN heterostructures.J Appl Phys2020;127:195704

[140]

Frei K,Schütt S.Investigation of growth parameters for ScAlN-barrier HEMT structures by plasma-assisted MBE.Jpn J Appl Phys2019;58:SC1045

[141]

Wang D,Musavigharavi P,Foucher AC.Ferroelectric switching in sub-20 nm aluminum scandium nitride thin films.IEEE Electron Device Lett2020;41:1774-7

[142]

Kataoka J,Hoshii T,Tsutsui K.A possible origin of the large leakage current in ferroelectric Al1-xScxN films.Jpn J Appl Phys2021;60:030907

[143]

Chen S,Mizutani K.GaN high electron mobility transistors (HEMTs) with self-upward-polarized AlScN gate dielectrics toward enhancement-mode operation.Jpn J Appl Phys2022;61:SH1007

[144]

Ryoo SK,Park HW.Investigation of optimum deposition conditions of radio frequency reactive magnetron sputtering of Al0.7Sc0.3N film with thickness down to 20 nm.Adv Electron Mater2022;8:2200726

[145]

Wang P,Vu NM,Heron JT.Fully epitaxial ferroelectric ScAlN grown by molecular beam epitaxy.Appl Phys Lett2021;118:223504

[146]

Liu Z,Hou B.Coexistence of ferroelectricity and ferromagnetism in Ni-doped Al0.7Sc0.3N thin films.Appl Phys Lett2022;120:252904

[147]

Hardy MT,Nepal N,Katzer DS.Epitaxial ScAlN grown by molecular beam epitaxy on GaN and SiC substrates.Appl Phys Lett2017;110:162104

[148]

Hardy MT,Nepal N.Control of phase purity in high scandium fraction heteroepitaxial ScAlN grown by molecular beam epitaxy.Appl Phys Express2020;13:065509

[149]

Sandu CS,Mertin S.Abnormal grain growth in AlScN thin films induced by complexion formation at crystallite interfaces.Phys Status Solid2019;216:1800569

[150]

Wang J,Mertin S,Ayazi F.A film bulk acoustic resonator based on ferroelectric aluminum scandium nitride films.J Microelectromech Syst2020;29:741-7

[151]

Kreutzer TN,Wagner B.A double-layer MEMS actuator based on ferroelectric polarization inversion in AlScN. In 2021 IEEE International Symposium on Applications of Ferroelectrics(ISAF), Sydney, Australia; 2021, pp. 1-3.

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/