Intelligent behaviors of hydrogel and liquid crystalline polymer aggregations and collectives: a mini-review

Deyun Chen , Jiaqing He , Bangchen Zhu , Wei Feng

Microstructures ›› 2025, Vol. 5 ›› Issue (3) : 2025045

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (3) :2025045 DOI: 10.20517/microstructures.2024.135
Review

Intelligent behaviors of hydrogel and liquid crystalline polymer aggregations and collectives: a mini-review

Author information +
History +
PDF

Abstract

Responsive materials exhibit intelligence through their intrinsic ability to autonomously sense and respond to external stimuli. These materials have the potential to form robotic swarms characterized by high flexibility, robust scalability, and fault tolerance. Among various responsive materials, hydrogels and liquid crystalline polymers are particularly advantageous due to their capability for reversible morphological transformations in response to external stimuli, including light, heat, electric field, and magnetic field. While numerous reviews have summarized magnetic swarm robotics, a comprehensive analysis of swarm aggregation behaviors in hydrogel- and liquid crystal-based polymer systems remains lacking. This review addresses this gap by examining (sub)millimeter-scale swarm robots, the fundamental mechanical properties of hydrogels and liquid crystalline polymers following aggregation and assembly, and the respective advantages and limitations of these materials in swarm robotics. Additionally, future research directions in this emerging field are discussed.

Keywords

Robot swarm / liquid crystalline polymers / hydrogels

Cite this article

Download citation ▾
Deyun Chen, Jiaqing He, Bangchen Zhu, Wei Feng. Intelligent behaviors of hydrogel and liquid crystalline polymer aggregations and collectives: a mini-review. Microstructures, 2025, 5(3): 2025045 DOI:10.20517/microstructures.2024.135

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li S,Cannon S.Programming active cohesive granular matter with mechanically induced phase changes.Sci Adv2021;7:eabe8494 PMCID:PMC8064647

[2]

Duan H,Fan Y.From animal collective behaviors to swarm robotic cooperation.Nat Sci Rev2023;10:nwad040 PMCID:PMC10089591

[3]

Berlinger F,Nagpal R.Implicit coordination for 3D underwater collective behaviors in a fish-inspired robot swarm.Sci Robot2021;6:eabd8668

[4]

Shaw E.Schooling fishes: the school, a truly egalitarian form of organization in which all members of the group are alike in influence, offers substantial benefits to its participants.Am Sci1978;66:166-75Available from: https://www.jstor.org/stable/27848512 [Last accessed on 7 Apr 2025]

[5]

Partridge BL.The structure and function of fish schools.Sci Am1982;246:114-23

[6]

Parrish JK,Grünbaum D.Self-organized fish schools: an examination of emergent properties.Biol Bull2002;202:296-305

[7]

Abdelrahman MK,Kalairaj MS.Material assembly from collective action of shape-changing polymers.Nat Mater2024;23:281-9

[8]

Wagner RJ,Hobbs E.Treadmilling and dynamic protrusions in fire ant rafts.J R Soc Interface2021;18:20210213 PMCID:PMC8241487

[9]

Blackiston D,Kriegman S,Bongard J.A cellular platform for the development of synthetic living machines.Sci Robot2021;6:eabf1571

[10]

Joh H.Materials and schemes of multimodal reconfigurable micro/nanomachines and robots: review and perspective.Adv Mater2021;33:e2101965

[11]

Sun B,Sung JJY.Micro- and nanorobots for biofilm eradication.Nat Rev Bioeng2024;2:367-9

[12]

Wang Q,Ning Z.Tracking and navigation of a microswarm under laser speckle contrast imaging for targeted delivery.Sci Robot2024;9:eadh1978

[13]

Wang Q,Lang J,Jin D.Reconfigurable liquid-bodied miniature machines: magnetic control and microrobotic applications.Adv Intell Syst2024;6:2300108

[14]

Mayorga-Martinez CC,Pribyl T.Programming self-assembling magnetic microrobots with multiple physical and chemical intelligence.Chem Eng J2024;488:150625

[15]

Jiang J,Hao B,Wu X.Automated microrobotic manipulation using reconfigurable magnetic microswarms.IEEE Trans Robot2024;40:3676-94

[16]

Yang L,Gao X,Dou Q.Autonomous environment-adaptive microrobot swarm navigation enabled by deep learning-based real-time distribution planning.Nat Mach Intell2022;4:480-93

[17]

Sitti M.Physical intelligence as a new paradigm.Extreme Mech. Lett2021;46:101340 PMCID:PMC7612657

[18]

Feng W,Zhang L.Embedded physical intelligence in liquid crystalline polymer actuators and robots.Adv Mater2025;37:e2312313 PMCID:PMC11733722

[19]

Gelebart AH,Varga M.Making waves in a photoactive polymer film.Nature2017;546:632-6 PMCID:PMC5495175

[20]

Ware TH,Wie JJ,White TJ.Actuating materials. Voxelated liquid crystal elastomers.Science2015;347:982-4

[21]

Feng W,Liu D.Oscillating chiral-nematic fingerprints wipe away dust.Adv Mater2018;30:1704970

[22]

Babakhanova G,Guo Y.Liquid crystal elastomer coatings with programmed response of surface profile.Nat Commun2018;9:456 PMCID:PMC5792610

[23]

Aharoni H,Zhang X,Yang S.Universal inverse design of surfaces with thin nematic elastomer sheets.Proc Natl Acad Sci USA2018;115:7206-11 PMCID:PMC6048487

[24]

Nie ZZ,Wang M.Light-driven continuous rotating Möbius strip actuators.Nat Commun2021;12:2334 PMCID:PMC8058083

[25]

Blanc B,Hunter I,Fernandez-Nieves A.Collective chemomechanical oscillations in active hydrogels.Proc Natl Acad Sci USA2024;121:e2313258121 PMCID:PMC10861864

[26]

Chiang MY,Hsieh HY,Fan SK.Constructing 3D heterogeneous hydrogels from electrically manipulated prepolymer droplets and crosslinked microgels.Sci Adv2016;2:e1600964 PMCID:PMC5091359

[27]

Jin D,Chan KF.Swarming self-adhesive microgels enabled aneurysm on-demand embolization in physiological blood flow.Sci Adv2023;9:eadf9278 PMCID:PMC10181194

[28]

Taylor AF,Wang F,Showalter K.Dynamical quorum sensing and synchronization in large populations of chemical oscillators.Science2009;323:614-7

[29]

Tinsley MR,Huang Z.Emergence of collective behavior in groups of excitable catalyst-loaded particles: spatiotemporal dynamical quorum sensing.Phys Rev Lett2009;102:158301

[30]

Tinsley M,Huang Z,Showalter K.Dynamical quorum sensing and synchronization in collections of excitable and oscillatory catalytic particles.Phys D Nonlinear Phenom2010;239:785-90

[31]

Toth R,Tinsley MR.Collective behavior of a population of chemically coupled oscillators.J Phys Chem B2006;110:10170-6

[32]

Na H,Park CS,Kim HY.Hydrogel-based strong and fast actuators by electroosmotic turgor pressure.Science2022;376:301-7

[33]

Le X,Zhang J.Recent progress in biomimetic anisotropic hydrogel actuators.Adv Sci2019;6:1801584 PMCID:PMC6402410

[34]

Chen Y,Li H.Bioinspired hydrogel actuator for soft robotics: opportunity and challenges.Nano Today2023;49:101764

[35]

Li W,Li M,Hou X.Nature-inspired strategies for the synthesis of hydrogel actuators and their applications.Prog Polym Sci2023;140:101665

[36]

Jiao D,Li CY,Wu ZL.Programmable morphing hydrogels for soft actuators and robots: from structure designs to active functions.ACC Chem Res2022;55:1533-45

[37]

Apsite I,Ionov L.Materials for smart soft actuator systems.Chem Rev2022;122:1349-415

[38]

López-Díaz A,Vázquez E.Hydrogels in soft robotics: past, present, and future.ACS Nano2024;18:20817-26 PMCID:PMC11328171

[39]

Liu J,He S,Shao W.Recent progress in PNIPAM-based multi-responsive actuators: a mini-review.Chem Eng J2022;433:133496

[40]

He J,Ge Z.pH-gated switch of LCST-UCST phase transition of hydrogels.Adv Funct Mater2024;34:2404341

[41]

Jiang Z,Taheri M.Strong, self-healable, and recyclable visible-light-responsive hydrogel actuators.Angew Chem Int Ed2020;59:7049-56

[42]

Ter Schiphorst J,Stumpel JE,Diamond D.Molecular design of light-responsive hydrogels, for in situ generation of fast and reversible valves for microfluidic applications.Chem Mater2015;27:5925-31

[43]

Li L,Levkin PA.Design and applications of photoresponsive hydrogels.Adv Mater2019;31:e1807333 PMCID:PMC9285504

[44]

LeValley PJ,Jaje J.On-demand and tunable dual wavelength release of antibody using light-responsive hydrogels.ACS Appl Bio Mater2020;3:6944-58 PMCID:PMC8315695

[45]

Feng W,Zhang S,Yasin A.UV-controlled shape memory hydrogels triggered by photoacid generator.RSC Adv2015;5:81784-9

[46]

Ko J,Kim D.High-performance electrified hydrogel actuators based on wrinkled nanomembrane electrodes for untethered insect-scale soft aquabots.Sci Robot2022;7:eabo6463

[47]

Zheng J,Le X.Mimosa inspired bilayer hydrogel actuator functioning in multi-environments.J Mater Chem C2018;6:1320-7

[48]

Gelebart AH,Meijer EW.Mastering the photothermal effect in liquid crystal networks: a general approach for self-sustained mechanical oscillators.Adv Mater2017;29:1606712

[49]

Ceron S,Petersen K.Programmable self-organization of heterogeneous microrobot collectives.Proc Natl Acad Sci USA2023;120:e2221913120 PMCID:PMC10268276

[50]

Oral CM.In vivo applications of micro/nanorobots.Nanoscale2023;15:8491-507

[51]

Kim M,Puigmartí-Luis J,Pané S.Targeted drug delivery: from chemistry to robotics at small scales.Annu Rev Control Robot Auton Syst2024;8:

[52]

Wang T,Yildiz E,Sitti M.Clinical translation of wireless soft robotic medical devices.Nat Rev Bioeng2024;2:470-85

[53]

Yang L,Ji F.Machine learning for micro- and nanorobots.Nat Mach Intell2024;6:605-18

[54]

Wang Y,Xie L,Zhang L.Swarm autonomy: from agent functionalization to machine intelligence.Adv Mater2025;37:2312956 PMCID:PMC11733729

[55]

Nelson BJ.Delivering drugs with microrobots.Science2023;382:1120-2

[56]

Mayorga-Martinez CC,Pumera M.Chemical multiscale robotics for bacterial biofilm treatment.Chem Soc Rev2024;53:2284-99

[57]

Zhu QL,Khoruzhenko O.Animating hydrogel knotbots with topology-invoked self-regulation.Nat Commun2024;15:300 PMCID:PMC10770334

[58]

Yuk H,Zhao X.Hydrogel interfaces for merging humans and machines.Nat Rev Mater2022;7:935-52

[59]

He Y,Hu Y.Magnetic hydrogel-based flexible actuators: a comprehensive review on design, properties, and applications.Chem Eng J2023;462:142193

[60]

Cheng FM,Li HD.Recent progress on hydrogel actuators.J Mater Chem B2021;9:1762-80

[61]

Liu X,Lin S.Hydrogel machines.Mater Today2020;36:102-24

[62]

Puza F.3D printing of polymer hydrogels - from basic techniques to programmable actuation.Adv Funct Mater2022;32:2205345

[63]

Dong Y,Salaita K.Programmable mechanically active hydrogel-based materials.Adv Mater2021;33:e2006600 PMCID:PMC8595730

[64]

Chen Z,Fang K,Yu J.Magneto-thermal hydrogel swarms for targeted lesion sealing.Adv Healthc Mater2025;14:e2403076

[65]

Han H,Deng W.Imaging-guided bioresorbable acoustic hydrogel microrobots.Sci Robot2024;9:eadp3593

[66]

Yoshida R.Self-oscillating gels driven by the Belousov-Zhabotinsky reaction as novel smart materials.Adv Mater2010;22:3463-83

[67]

Vantomme G,Gelebart AH.Coupled liquid crystalline oscillators in Huygens' synchrony.Nat Mater2021;20:1702-6 PMCID:PMC7612044

[68]

Du C,Li K.Self-sustained collective motion of two joint liquid crystal elastomer spring oscillator powered by steady illumination.Micromachines2022;13:271 PMCID:PMC8876739

[69]

Wu H,Li K.Synchronous behaviors of three coupled liquid crystal elastomer-based spring oscillators under linear temperature fields.Phys Rev E2024;109:024701

[70]

Deng Z,Priimagi A.Light-fueled nonreciprocal self-oscillators for fluidic transportation and coupling.Adv Mater2024;36:e2209683

[71]

Hu Z,Li Q,Lv JA.Optocapillarity-driven assembly and reconfiguration of liquid crystal polymer actuators.Nat Commun2020;11:5780 PMCID:PMC7666155

[72]

Dana A,Sivaperuman Kalairaj M.Collective action and entanglement of magnetically active liquid crystal elastomer ribbons.arXiv2024;Available from: https://ssrn.com/abstract=4997256 [Last accessed on 7 Apr 2025]

[73]

Gu F,Yuan Y.External field-responsive ternary non-noble metal oxygen electrocatalyst for rechargeable zinc-air batteries.Adv Mater2024;36:e2313096

AI Summary AI Mindmap
PDF

83

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/