A hierarchical host microstructure enables regulated inner Li deposition for stable Li metal electrodes

Zhendong Li , George Z. Chen , Di Hu , Xiayin Yao , Zhe Peng

Microstructures ›› 2024, Vol. 4 ›› Issue (4) : 2024059

PDF
Microstructures ›› 2024, Vol. 4 ›› Issue (4) :2024059 DOI: 10.20517/microstructures.2024.13
Research Article

A hierarchical host microstructure enables regulated inner Li deposition for stable Li metal electrodes

Author information +
History +
PDF

Abstract

Dendritic lithium (Li) deposition is a critical issue hindering the development of next-generation high-energy-density Li metal batteries (LMBs). Confining Li deposition within a three-dimensional host is a general strategy to suppress the volume expansion of the Li electrode. However, precise control of continuous Li growth in the pore space of the host is rarely investigated, which is a crucial issue to enable a high utilization ratio of the hosted Li for practical LMBs. Herein, a novel hierarchical host structure possessing a multifunctional secondary porous structure to regulate the continuous Li growth with high uniformity and reversibility is proposed. The secondary porous structure consisting of carbon nanotubes, nickel and Li2O-enriched solid electrolyte interphase is in-situ generated via lithiation reaction of a modified nickel foam scaffold, exhibiting high lithiophilicity, fast Li+ transportation and charge transfer. The LMB utilizing Li metal electrodes hosted by this rational structure achieved a stable cycling over 300 cycles with a practical LiFePO4 positive electrode (~2.5 mAh cm-2) at 0.5C/0.5C in the voltage window of 2.5-4.4 V. This work provides a novel approach to designing the host microstructure for constructing more stable Li metal electrode in practical LMBs.

Keywords

Li metal battery / Li metal electrode / dendrite / volume expansion / carbon nanotube / host structure

Cite this article

Download citation ▾
Zhendong Li, George Z. Chen, Di Hu, Xiayin Yao, Zhe Peng. A hierarchical host microstructure enables regulated inner Li deposition for stable Li metal electrodes. Microstructures, 2024, 4(4): 2024059 DOI:10.20517/microstructures.2024.13

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xiao J,Glossmann T,Liu Z.From laboratory innovations to materials manufacturing for lithium-based batteries.Nat Energy2023;8:329-39

[2]

Liu J,Cui Y.Pathways for practical high-energy long-cycling lithium metal batteries.Nat Energy2019;4:180-6

[3]

Guo Y,Zhai T.Reviving lithium-metal anodes for next-generation high-energy batteries.Adv Mater2017;29:1700007

[4]

Cheng XB,Zhao CZ.Toward safe lithium metal anode in rechargeable batteries: a review.Chem Rev2017;117:10403-73

[5]

Genieser R,Loveridge M.Lithium ion batteries (NMC/graphite) cycling at 80 °C: different electrolytes and related degradation mechanism.J Power Sources2018;373:172-83

[6]

Lu Z,Long Y.Constructing a high-strength solid electrolyte layer by in vivo alloying with aluminum for an ultrahigh-rate lithium metal anode.Adv Funct Mater2020;30:1907343

[7]

Xu R,Ma X.Identifying the critical anion-cation coordination to regulate the electric double layer for an efficient lithium-metal anode interface.Angew Chem2021;133:4261-6

[8]

Wang X,Zhang W.Dual-salt-additive electrolyte enables high-voltage lithium metal full batteries capable of fast-charging ability.Nano Energy2021;89:106353

[9]

He Y,Wang Z.In situ surface film formed by solid-state anodic oxidation for stable lithium metal anodes.Adv Funct Mater2021;31:2101737

[10]

Ju Z,Cai X.Cationic interfacial layer toward a LiF-enriched interphase for stable Li metal batteries.ACS Energy Lett2023;8:486-93

[11]

Liu Y,Wang Y.Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries.Science2022;375:739-45

[12]

Shadike Z,Lin R,Hu E.Engineering and characterization of interphases for lithium metal anodes.Chem Sci2022;13:1547-68 PMCID:PMC8826631

[13]

Wang Z,Liu Y.Metal-organic frameworks and their derivatives for optimizing lithium metal anodes.eScience2024;4:100189

[14]

Li Z,Chen J.In-depth Li+ transportation in three-dimensionalized nanodiamond network for improved liquid and solid lithium metal batteries.Nano Energy2023;110:108370

[15]

Liu L,Li JY,Guo YG.Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes.Adv Mater2018;30:1706216

[16]

Lu L,Pan Z,Zhou F.Lithiophilic Cu-Ni core-shell nanowire network as a stable host for improving lithium anode performance.Energy Stor Mater2017;9:31-8

[17]

Chi S,Song W,Zhang Q.Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode.Adv Funct Mater2017;27:1700348

[18]

Liu B,Wang Z.Coupling a sponge metal fibers skeleton with in situ surface engineering to achieve advanced electrodes for flexible lithium-sulfur batteries.Adv Mater2020;32:e2003657

[19]

Ye H,Yin YX,Guo YG.Stable Li plating/stripping electrochemistry realized by a hybrid Li reservoir in spherical carbon granules with 3D conducting skeletons.J Am Chem Soc2017;139:5916-22

[20]

Li S,Wei B.A lightweight, adhesive, dual-functionalized over-coating interphase toward ultra-stable high-current density lithium metal anodes.Energy Environ Mater2021;4:103-10

[21]

Gong H,Chen S.Fast-charging of hybrid lithium-ion/lithium-metal anodes by nanostructured hard carbon host.ACS Energy Lett2022;7:4417-26

[22]

Tan L,Li X.Oxygen-induced lithiophilicity of tin-based framework toward highly stable lithium metal anode.Chem Eng J2020;394:124848

[23]

Tan L,Cheng M.In-situ tailored 3D Li2O@Cu nanowires array enabling stable lithium metal anode with ultra-high coulombic efficiency.J Power Sources2020;463:228178

[24]

Wu K,Yang C,Liu W.ZnCo2O4/ZnO induced lithium deposition in multi-scaled carbon/nickel frameworks for dendrite-free lithium metal anode.J Energy Chem2020;43:16-23

[25]

Xue P,Shi X.A hierarchical silver-nanowire-graphene host enabling ultrahigh rates and superior long-term cycling of lithium-metal composite anodes.Adv Mater2018;30:e1804165

[26]

He Y,Li Z,Peng Z.Hosting Li0 in an activated lithiophilic polymer matrix with electrodeposition regulating spaces for stable lithium metal anodes.Nano Energy2023;118:109027

[27]

Wang C,Chen Z.Robust anode-free sodium metal batteries enabled by artificial sodium formate interface.Adv Energy Mater2023;13:2204125.

[28]

Li G,Zhang S.A biocompatible electrolyte enables highly reversible Zn anode for zinc ion battery.Nat Commun2023;14:6526 PMCID:PMC10579325

[29]

Feng Y,Zhou J.Selective potassium deposition enables dendrite-resistant anodes for ultrastable potassium-metal batteries.Adv Mater2023;35:2300886

[30]

Zhang Z,Peng Z.Facile pyrolyzed N-doped binder network for stable Si anodes.ACS Appl Mater Interfaces2017;9:32775-81

[31]

Alastuey P,Comedi D,Marin-ramirez O.On the properties of NiO powders obtained by different wet chemical methods and calcination.J Am Ceram Soc2024;107:92-106

AI Summary AI Mindmap
PDF

51

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/