Recent advances of two-dimensional molybdenum oxides

Zeyuan Zhao , Weimin Lei , Tianyu Zhou , Kang Chen , Kaiwen Tian , Gaojie Xiong , Shuangyang Kuang , Liwei Xiong , Yiling Yu , Liang Huang

Microstructures ›› 2025, Vol. 5 ›› Issue (2) : 2025034

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (2) :2025034 DOI: 10.20517/microstructures.2024.128
Review

Recent advances of two-dimensional molybdenum oxides

Author information +
History +
PDF

Abstract

Over two decades have passed since the successful exfoliation of graphene, which initiated the exploration of two-dimensional (2D) materials. Since then, this vibrant group has expanded to encompass a variety of new materials. Among these, molybdenum (Mo)-based oxides with 2D structures have attracted growing interest. Due to their remarkable properties, 2D Mo-based oxides have ensured their prominent position in cutting-edge scientific domains, including energy applications, catalysis and electronic devices. This review systematically examines recent advancements in the synthesis, structural regulation, and applications of 2D Mo-based oxides. Firstly, a detailed overview of various synthesis techniques is given, including but not limited to hydrothermal methods, physical vapor deposition, and chemical vapor deposition, enabling the production of high-quality 2D Mo-based oxides. Subsequently, strategies are presented for structural regulation through doping, interface engineering, and interlayer tuning. Finally, recent application developments in energy conversion and storage, catalysis, sensing, and optoelectronic devices are highlighted. Furthermore, an outlook on potential future trends is provided at the conclusion of the review, aiming to advance the practical deployment of 2D Mo-based oxides in emerging technologies.

Keywords

Two-dimensional (2D) materials / molybdenum oxides / nanostructure / structural regulation

Cite this article

Download citation ▾
Zeyuan Zhao, Weimin Lei, Tianyu Zhou, Kang Chen, Kaiwen Tian, Gaojie Xiong, Shuangyang Kuang, Liwei Xiong, Yiling Yu, Liang Huang. Recent advances of two-dimensional molybdenum oxides. Microstructures, 2025, 5(2): 2025034 DOI:10.20517/microstructures.2024.128

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gusain R,Joshi P.Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: a comprehensive review.Adv Colloid Interface Sci2019;272:102009

[2]

Mei J,Kou L.Two-dimensional metal oxide nanomaterials for next-generation rechargeable batteries.Adv Mater2017;29:1700176

[3]

Zhu Y,Fang Z,Zhang X.Structural engineering of 2D nanomaterials for energy storage and catalysis.Adv Mater2018;30:e1706347

[4]

Garland BM,Strandwitz NC,Bargiela P.A study of in situ reduction of MoO3 to MoO2 by X-ray photoelectron spectroscopy.Appl Surf Sci2022;598:153827

[5]

de Castro IA,Ou JZ.Molybdenum oxides - from fundamentals to functionality.Adv Mater2017;29:1701619

[6]

Zou B,Zhou Y.Optical effect modulation in polarized raman spectroscopy of transparent layered α-MoO3.Small2023;19:e2206932

[7]

Ye M,Zhu S.Nano-optical engineering of anisotropic phonon resonances in a hyperbolic α-MoO3 metamaterial.Adv Opt Mater2022;10:2102096

[8]

Tao S,Zeng Y.Anisotropic Fermat’s principle for controlling hyperbolic van der Waals polaritons.Photon Res2022;10:B14

[9]

Wang Y,You S.Giant quartic-phonon decay in PVD-grown α-MoO3 flakes.Nano Res2023;16:1115-22

[10]

Zheng M,Yan P.Heterogeneous CNF/MoO3 nanofluidic membranes with tunable surface plasmon resonances for solar-osmotic energy conversion.Mater Horiz2024;11:3375-85

[11]

Kong W,Zheng X.Sunlight driven reversible and tunable plasmon resonance in 2D amorphous molybdenum oxide.Adv Opt Mater2024;12:2301821

[12]

Hu G,Si G.Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers.Nature2020;582:209-13

[13]

Wang SY,Zha MJ,Liu Z.Tunable optical activity in twisted anisotropic two-dimensional materials.ACS Nano2023;17:16230-8

[14]

Duan J,Lanza C.Multiple and spectrally robust photonic magic angles in reconfigurable α-MoO3 trilayers.Nat Mater2023;22:867-72

[15]

Liu H,Zhang K,Xie M.Effect of substrate on the near-field radiative heat transfer between α-MoO3 films.Int J Heat Mass Transf2023;210:124206

[16]

Li L,Liu H,Liu Y.Near-field radiative modulator based on α-MoO3 films.Int J Heat Mass Transfer2023;216:124603

[17]

Ren H,Cui J.Synthesis, functional modifications, and diversified applications of molybdenum oxides micro-/nanocrystals: a review.Cryst Growth Des2018;18:6326-69

[18]

Scanlon DO,Payne DJ,Egdell RG.Theoretical and experimental study of the electronic structures of MoO3 and MoO2.J Phys Chem C2010;114:4636-45

[19]

Huang C,Zheng W.The debut and spreading the landscape for excellent vacancies-promoted electrochemical energy storage of nano-architected molybdenum oxides.Mater Today Energy2022;30:101154

[20]

Xie H,Cheng L.Recent advances in the fabrication of 2D metal oxides.iScience2022;25:103598 PMCID:PMC8717458

[21]

Kuriakose S,Monshipouri M.Customized two-dimensional nanostructured MoO3 inks for spectrally selective UV chromic patches.ACS Appl Nano Mater2022;5:18553-60

[22]

Wei Z,Liu L.Microwave-exfoliated 2D oligo-layer MoO3-x nanosheets with outstanding molecular adsorptivity and room-temperature gas sensitivity on ppb level.Chem Eng J2023;454:140076

[23]

Meng X,Shi W.SERS detection of trace carcinogenic aromatic amines based on amorphous MoO3 monolayers.Angew Chem Int Ed2024;63:e202407597

[24]

Wu T,Wang J,Tian Y.Electrochemical reduction of nitrite to ammonia on amorphous MoO3 nanosheets.Dalton Trans2024;53:877-81

[25]

Ou Y,Guo Y.2D/2D Dy2O3 nanosheet/MoO3 nanoflake heterostructures for humidity-independent and sensitive ammonia detection.ACS Sens2023;8:4253-63

[26]

Pradeep Kumar P.Enhanced dual gas sensing performance of MoS2/MoO3 nanostructures for NH3 and NO2 detection.Ceram Int2024;50:21978-88

[27]

Wang ZY,Zhang FG.Photocatalytic nitrogen fixation coupled with the generation of value-added chemicals from N2 and cellulose over MoO3 nanosheets.Inorg Chem2024;63:9715-9

[28]

Ding W,Su S.In-situ construction of Schottky junctions with synergistic interaction of oxygen vacancies in Mo@MoO3 nanosheets for efficient N2 photoreduction.Appl Surf Sci2023;633:157594

[29]

Xiao R,Feng S.Porous MoO3 nanosheets for conductometric gas sensors to detect diisopropylamine.Sens Actuators B Chem2023;382:133472

[30]

Madani S,Motta N.Simulation of perovskite solar cells using molybdenum oxide thin films as interfacial layer for enhancing device performance.Sustain Mater Technol2022;32:e00426

[31]

Du Y,Peterson EW.Iso-oriented monolayer α-MoO3(010) films epitaxially grown on SrTiO3(001).Nanoscale2016;8:3119-24

[32]

Bisht P,Jensen IT,Belle BD.Enhanced gas sensing response for 2D α-MoO3 layers: thickness-dependent changes in defect concentration, surface oxygen adsorption, and metal-metal oxide contact.Sens Actuators B Chem2021;341:129953

[33]

Zhao X,Guo S.Controllable hot electron transfer in the Ag/MoO3 layer by layer system: thickness-dependent MoO3 layer.Spectrochim Acta A Mol Biomol Spectrosc2023;286:121995

[34]

Rahman M,Pemmaraju DB,Deshpande UP.An expanded plasma jet assisted technique for very high-rate synthesis of 2D α-MoO3 nanomaterials, with surface oxygen vacancies and robust induced ferromagnetism.Vacuum2024;225:113237

[35]

Hong Y,Pan B.Thinner 2D α-MoO3 makes setting up memristors easier.J Materiomics2024;10:1279-89

[36]

Deng L,Li W.KCl acts as a flux to assist the growth of sub-millimeter-scale metallic 2D non-layered molybdenum dioxide.Rare Met2025;44:404-16

[37]

Xu H,Wang S.Tunability of near infrared opto-synaptic properties of thin MoO3 films fabricated by atomic layer deposition.Appl Surf Sci2022;593:153399

[38]

Kim YW,Park JH.Self-isolating electrode deposition process using the area-selective MoO2 and MoO3 atomic layer deposition technique.Appl Mater Today2024;37:102160

[39]

Lee DJ,Kim Y.Hybrid CsPbBr3 quantum dots decorated two dimensional MoO3 nanosheets photodetectors with enhanced performance.J Mater Res Technol2022;18:4946-55

[40]

Kundu M,Mondal I.A rational preparation strategy of phase tuned MoO3 nanostructures for high-performance all-solid asymmetric supercapacitor.J Energy Chem2023;87:192-206

[41]

Zhu Y,Li H.MoO3 nanoplates preparation via self-sacrifice C3N4 for supercapacitors in an acid electrolyte.J Energy Storage2023;60:106657

[42]

Alam MH,Roy A.Wafer-scalable single-layer amorphous molybdenum trioxide.ACS Nano2022;16:3756-67

[43]

Liu B,Lv Y.Facile synthesis of oxygen-deficient MoO3-x nanosheets by light radiation for fast electrochromic supercapacitors.Electrochim Acta2023;464:142894

[44]

Qi S,Zhang K,Zhao Y.Colloidal synthesis of plasmonic ultrathin transition-metal oxide nanosheets.ACS Sustain Chem Eng2022;10:9565-72

[45]

Shkir M,Alkallas FH.High performance of the rare earth (Er, Gd & Pr) doped MoO3 thin films for advanced applications towards ammonia gas sensing.J Mater Res Technol2022;20:4556-65

[46]

Li T,Lu L.Highly sensitive optical fiber plasmonic sensors by integrating hydrogen doped molybdenum oxide.IEEE Sensors J2022;22:7734-42

[47]

Li W,Wang A.Insitu controllable synthesis of MoO3 nanoflakes and its temperature-dependent dual selectivity for detection of ethanol and isopropanol.Sens Actuators B Chem2024;408:135548

[48]

Kriegel I,Rodríguez-Fernández J.Tuning the excitonic and plasmonic properties of copper chalcogenide nanocrystals.J Am Chem Soc2012;134:1583-90

[49]

Li C,Kim MG,Liu X.Ru-incorporated oxygen-vacancy-enriched MoO2 electrocatalysts for hydrogen evolution reaction.Appl Catal B Environ2022;307:121204

[50]

Luo Z,Huan TD.Mesoporous MoO3-x material as an efficient electrocatalyst for hydrogen evolution reactions.Adv Energy Mater2016;6:1600528

[51]

Cheng H,Mori K.Surfactant-free nonaqueous synthesis of plasmonic molybdenum oxide nanosheets with enhanced catalytic activity for hydrogen generation from ammonia borane under visible light.Angew Chem Int Ed2014;53:2910-4

[52]

Sun Y,Wang C,Sun S.Controllable synthesis of defect-enriched MoO3 for enhanced H2S sensing through hydrothermal methods: experiments and DFT calculations.J Alloys Compd2023;968:172035

[53]

Sun J,Zhao Z,Meng X.Rapid carbothermal shocking fabrication of iron-incorporated molybdenum oxide with heterogeneous spin states for enhanced overall water/seawater splitting.Mater Horiz2024;11:1199-211

[54]

Xu L,Chao S.Advanced oxygen-vacancy Ce-doped MoO3 ultrathin nanoflakes anode materials used as asymmetric supercapacitors with ultrahigh energy density.Adv Energy Mater2022;12:2200101

[55]

Lin Y,Magomedov A.18.73% efficient and stable inverted organic photovoltaics featuring a hybrid hole-extraction layer.Mater Horiz2023;10:1292-300

[56]

Wang H,Feng Z,Zhao H.Constructing defect engineered 2D/2D MoO3/g-C3N4 Z-scheme heterojunction for enhanced photocatalytic activity.J Alloys Compd2022;926:166964

[57]

Peng J,Yu X,Zulfiqar .Construction of LSPR-enhanced 0D/2D CdS/MoO3-x S-scheme heterojunctions for visible-light-driven photocatalytic H2 evolution.Chin J Catal2021;42:87-96

[58]

Wei Y,Zhou Y.Noble-metal-free plasmonic MoO3-x-based S-scheme heterojunction for photocatalytic dehydrogenation of benzyl alcohol to storable H2 fuel and benzaldehyde.Chin J Catal2022;43:2665-77

[59]

Wang H,Xu M.Dual-plasma enhanced 2D/2D/2D g-C3N4/Pd/MoO3-x S-scheme heterojunction for high-selectivity photocatalytic CO2 reduction.Appl Surf Sci2023;640:158420

[60]

Yoon A,Yoon J,Lee Z.van der Waals epitaxial formation of atomic layered α-MoO3 on MoS2 by oxidation.ACS Appl Mater Interfaces2020;12:22029-36

[61]

Krishnan A,Nayak PK.Surface functionalized 2D MoO3-hBN heterostructure as friction modifiers in boundary lubrication regime.Surf Interfaces2024;51:104527

[62]

Wang Q,Zhang Z.Keggin-type polycationic AlO4Al12(OH)24(H2O)127+ intercalated MoO3 composites for methyl orange adsorption.Chin Chem Lett2022;33:2617-20

[63]

Tan Y,Wang B,Wang T.Tuning the layer structure of molybdenum trioxide towards high-performance aqueous zinc-ion batteries.Chin Chem Lett2023;34:107410

[64]

Gao Z,Pan Z.Boosting ammonia synthesis over MoO2 by Li intercalation.Green Chem2022;24:7584-91

[65]

Reed BW,Koski KJ.Tunable chemochromism and elastic properties in intercalated MoO3: Au-, Cr-, Fe-, Ge-, Mn-, and Ni-MoO3.ACS Nano2024;18:12845-52

[66]

Hu T,Meng F.Preparation of 2D Polyaniline/MoO3-x superlattice nanosheets via intercalation-induced morphological transformation for efficient chemodynamic therapy.Adv Healthc Mater2023;12:e2202911

[67]

Xie S,Hu C.Pressure effect on structure transition and optical anisotropy in MoO3.Appl Phys Lett2022;120:131901

[68]

Wang S,Liu T,Huang Y.Irreversible pressure effect on phase transitions and bandgap narrowing of layered MoO3.Mater Today Adv2024;21:100476

[69]

Chia X.Characteristics and performance of two-dimensional materials for electrocatalysis.Nat Catal2018;1:909-21

[70]

Wen K,Qu L.g-C3N4/MoO3 composite with optimized crystal face: a synergistic adsorption-catalysis for boosting cathode performance of lithium-sulfur batteries.J Colloid Interface Sci2023;649:890-9

[71]

Hsu FH,Subramani R.The ion behavior and storage mechanism of 2D MoO3 layer structure in an air-stable hydrated eutectic electrolyte for aluminum-ion energy storage.J Energy Storage2024;84:110693

[72]

Hao L,Zhang Y.Oxygen vacant semiconductor photocatalysts.Adv Funct Mater2021;31:2100919

[73]

Ashraf GA,Rasool RU.Photocatalytic stimulation of peroxymonosulfate by novel MoO3@ZrO2 with Z-scheme heterojunction for diclofenac sodium degradation.J Water Process Eng2023;51:103435

[74]

Wang J,Dong X.Hydrothermal oxygen uncoupling of high-concentration biogas slurry over Cu-α-Fe2O3·α-MoO3 catalyst.J Environ Manag2022;320:115827

[75]

Zhao X,Xu L.Oxygen-vacancy Ce-MoO3 nanosheets loaded Pt nanoparticles for super-efficient photoelectrocatalytic oxidation of methanol.Appl Surf Sci2024;655:159576

[76]

Zhu Y,Zhong Y,Shao Z.Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts.Energy Environ Sci2020;13:3361-92

[77]

Wang X,Zhang D.N-doped carbon sheets supported P-Fe3O4-MoO2 for freshwater and seawater electrolysis.J Colloid Interface Sci2023;652:1217-27

[78]

Li J,Zhang J,Yan W.Confining Pd nanoparticles and atomically dispersed Pd into defective MoO3 nanosheet for enhancing electro- and photocatalytic hydrogen evolution performances.ACS Appl Mater Interfaces2019;11:27798-804

[79]

Deka H,Agarwal P.Simulation studies on MoS2 (n)/a-Si:H (i)/c-Si (p)/MoO3 heterojunction solar cells using one sided short diode approximation.Solar Energy2023;263:111943

[80]

Li J,Wang Y.Low oxygen content MoOx and SiOx tunnel layer based heterocontacts for efficient and stable crystalline silicon solar cells approaching 22% efficiency.Adv Funct Mater2024;34:2310619

[81]

Suzuki I,Nogami T.High open-circuit voltage in single-crystalline n -type SnS/MoO3 photovoltaics.APL Mater2023;11:031116

[82]

Wang J,Zu Y.A tandem organic photovoltaic cell with 19.6% efficiency enabled by light distribution control.Adv Mater2021;33:e2102787

[83]

Liu Z,Sun L.Enhanced performance of polymer solar cells by ultraviolet-ozone treatment of MoOx films with non-thermal annealing treatment of MoOx films.Surf Interfaces2024;51:104701

[84]

Jiang W,Zheng Y.Efficient electron transfer through interfacial water molecules across two-dimensional MoO3 for humidity sensing.ACS Appl Mater Interfaces2024;16:7406-14

[85]

Zhang W,Hopmann E.Nanostructured inorganic electrochromic materials for light applications.Nanophotonics2020;10:825-50

[86]

Gao G,He Y.Electrochromic composites films composed of MoO3 doped by tungsten atoms with remarkable response speed and color rendering efficiency via electrochemical deposition.Appl Surf Sci2023;640:158346

[87]

Kowalczyk DA,Szałowski K.Two-dimensional crystals as a buffer layer for high work function applications: the case of monolayer MoO3.ACS Appl Mater Interfaces2022;14:44506-15 PMCID:PMC9542700

[88]

Yang Z,Qin L.Enhanced organic thin-film transistor stability by preventing MoO3 diffusion with metal/MoO3/organic multilayered interface source-drain contact.ACS Appl Mater Interfaces2023;15:1704-17

[89]

Shan X,Wang F.Dual-conductivity mechanism investigation of 2D α-MoO3-based multi-level memristor.Sci China Mater2023;66:4773-81

[90]

Ma Y.2D SnO/MoO3 van der Waals heterojunction with tunable electronic behavior for multifunctional applications: DFT calculations.App Surf Sci2023;611:155719

[91]

Surnev S.Tungsten and molybdenum oxide nanostructures: two-dimensional layers and nanoclusters.J Phys Condens Matter2022;34:233001

[92]

Petronijevic E,Larciprete MC,Sibilia C.Extrinsic chirality and circular dichroism at visible frequencies enabled by birefringent α-MoO3 nanoscale-thick films: implications for chiro-optical control.ACS Appl Nano Mater2022;5:5609-16

[93]

Kundu M,Bose N,Das S.2D MoO3/PVDF-HFP nanocomposites for flexible piezoelectric nanogenerator and wireless mechanosensor applications.ACS Appl Nano Mater2024;7:1804-14

[94]

Novotný P,Li F.MoO3/Al2O3 catalysts for chemical-looping oxidative dehydrogenation of ethane.J Chem Phys2020;152:044713

AI Summary AI Mindmap
PDF

65

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/