In situ study of phase transition in HZO ferroelectric thin films via TEM electron beam irradiation

Ke Cao , Quanlin Zhao , Jiajia Liao , Fei Yan , Keyu Bao , Shijie Jia , Jianquan Zhang , Junhui Luo , Min Liao , Yichun Zhou

Microstructures ›› 2025, Vol. 5 ›› Issue (2) : 2025025

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (2) :2025025 DOI: 10.20517/microstructures.2024.120
Research Article

In situ study of phase transition in HZO ferroelectric thin films via TEM electron beam irradiation

Author information +
History +
PDF

Abstract

Oxygen vacancies (VO) play a crucial role in the stability of the ferroelectric orthorhombic (o-) phase of hafnium dioxide (HfO2)-based thin films. However, the stability of the ferroelectric phase of HfO2 under the action of VO and the mechanism of ferroelectric phase transition are still unclear. In this work, VO concentration in Hf0.5Zr0.5O2 (HZO) thin films is tuned through electron beam irradiation inside a transmission electron microscope. For the crystalline HZO thin films processed through rapid thermal annealing, the increase of the VO concentration during in situ electron beam irradiation facilitated the phase transition from the non-polar monoclinic (m-) and tetragonal (t-) phases to the polar o-phase. For the amorphous HZO thin films, the nucleation and growth process of the m- and o-phases are observed during in situ electron beam irradiation. The phase transition from m-phase to o-phase is accompanied by the evolution from tensile to compressive strain. These results help to clarify the mechanism of ferroelectric phase transition under the action of VO, and guide the control of the ferroelectric properties and phase stability of HfO2-based thin films.

Keywords

Ferroelectric film / Hf0.5Zr0.5O2 / oxygen vacancy / phase transition / electron beam irradiation

Cite this article

Download citation ▾
Ke Cao, Quanlin Zhao, Jiajia Liao, Fei Yan, Keyu Bao, Shijie Jia, Jianquan Zhang, Junhui Luo, Min Liao, Yichun Zhou. In situ study of phase transition in HZO ferroelectric thin films via TEM electron beam irradiation. Microstructures, 2025, 5(2): 2025025 DOI:10.20517/microstructures.2024.120

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Scott JF.Ferroelectric memories.Science1989;246:1400-5

[2]

Kang S,Morozovska AN.Highly enhanced ferroelectricity in HfO2-based ferroelectric thin film by light ion bombardment.Science2022;376:731-8

[3]

Park MH,Kim HJ.Ferroelectricity and antiferroelectricity of doped thin HfO2-based films.Adv Mater2015;27:1811-31

[4]

Polakowski P.Ferroelectricity in undoped hafnium oxide.Appl Phys Lett2015;106:232905

[5]

Müller J,Müller S.Ferroelectric hafnium oxide: a CMOS-compatible and highly scalable approach to future ferroelectric memories. In Proceedings of the 2013 IEEE International Electron Devices Meeting; 9-11 December 2013, Washington, DC, USA.

[6]

Böscke TS,Bräuhaus D,Böttger U.Ferroelectricity in hafnium oxide thin films.Appl Phys Lett2011;99:102903

[7]

Mikolajick T,Park MH.Ferroelectric hafnium oxide for ferroelectric random-access memories and ferroelectric field-effect transistors.MRS Bull2018;43:340-6

[8]

Sang X,Schenk T,Lebeau JM.On the structural origins of ferroelectricity in HfO2 thin films.Appl Phys Lett2015;106:162905

[9]

Jia Y,Fang YW.Giant tunnelling electroresistance in atomic-scale ferroelectric tunnel junctions.Nat Commun2024;15:693 PMCID:PMC10808203

[10]

Hao Y,Zhang L.Record high room temperature resistance switching in ferroelectric-gated Mott transistors unlocked by interfacial charge engineering.Nat Commun2023;14:8247 PMCID:PMC10716183

[11]

Lee TY,Lim HH.Ferroelectric polarization-switching dynamics and wake-up effect in Si-doped HfO2.ACS Appl Mater Interfaces2019;11:3142-9

[12]

Grimley ED,Mikolajick T,Lebeau JM.Atomic structure of domain and interphase boundaries in ferroelectric HfO2.Adv Mater Inter2018;5:1701258

[13]

Batra R,Jones JL,Ramprasad R.Factors favoring ferroelectricity in hafnia: a first-principles computational study.J Phys Chem C2017;121:4139-45

[14]

Schroeder U,Mikolajick T.The fundamentals and applications of ferroelectric HfO2.Nat Rev Mater2022;7:653-69

[15]

Mittmann T,Chang SC,Mikolajick T.Impact of Oxygen Vacancy Content in Ferroelectric HZO films on the Device Performance. In Proceedings of the 2020 IEEE International Electron Devices Meeting (IEDM); 12-18 December 2020, San Francisco, CA, USA.

[16]

He R,Liu S,Zhong Z.Ferroelectric structural transition in hafnium oxide induced by charged oxygen vacancies.Phys Rev B2021;104:L180102

[17]

Zhou Y,Yang Q.The effects of oxygen vacancies on ferroelectric phase transition of HfO2-based thin film from first-principle.Comput Mater Sci2019;167:143-50

[18]

Muñoz Ramo D,Gavartin JL.Theoretical prediction of intrinsic self-trapping of electrons and holes in monoclinic HfO2.Phys Rev Lett2007;99:155504

[19]

Yan F,Liu Y.Recent progress on defect-engineering in ferroelectric HfO2: the next step forward via multiscale structural optimization.Mater Horiz2024;11:626-45

[20]

Shao M,He R.Programmable ferroelectricity in Hf0.5Zr0.5O2 enabled by oxygen defect engineering.Nano Lett2024;24:1231-7

[21]

Lee J,Kwon JY.Role of oxygen vacancies in ferroelectric or resistive switching hafnium oxide.Nano Converg2023;10:55 PMCID:PMC10692067

[22]

Materano M,Lomenzo PD.Influence of oxygen content on the structure and reliability of ferroelectric HfxZr1-xO2 layers.ACS Appl Electron Mater2020;2:3618-26

[23]

Bao K,Yan F.Enhanced endurance and imprint properties in Hf0.5Zr0.5O2-δ ferroelectric capacitors by tailoring the oxygen vacancy.ACS Appl Electron Mater2023;5:4615-23

[24]

Zheng Y,Xin T.Direct atomic-scale visualization of the 90° domain walls and their migrations in Hf0.5Zr0.5O2 ferroelectric thin films.Mater Today Nano2023;24:100406

[25]

Bai F,Yang J.Mechanical-electrical-chemical coupling study on the stabilization of a hafnia-based ferroelectric phase.NPJ Comput Mater2023;9:1176

[26]

Fan P,Yang Q.Origin of the intrinsic ferroelectricity of HfO2 from ab initio molecular dynamics.J Phys Chem C2019;123:21743-50

[27]

Dogan M,Ma TP.Causes of ferroelectricity in HfO2-based thin films: an ab initio perspective.Phys Chem Chem Phys2019;21:12150-62

[28]

Shiraishi T,Yokouchi T.Impact of mechanical stress on ferroelectricity in (Hf0.5Zr0.5)O2 thin films.Appl Phys Lett2016;108:262904

[29]

Bouaziz J,Baboux N.Huge reduction of the wake-up effect in ferroelectric HZO thin films.ACS Appl Electron Mater2019;1:1740-5

[30]

Luo Q,Yang J.A highly CMOS compatible hafnia-based ferroelectric diode.Nat Commun2020;11:1391 PMCID:PMC7070068

[31]

Chen L,Shao S,Tang K.First direct observation of the built-in electric field and oxygen vacancy migration in ferroelectric Hf0.5Zr0.5O2 film during electrical cycling.Nanoscale2023;15:7014-22

[32]

Hanson ED,Hao S.Systematic study of oxygen vacancy tunable transport properties of few-layer MoO3-x enabled by vapor-based synthesis.Adv Funct Mater2017;27:1605380

[33]

Bhat J,Karguppikar A.Electron beam radiation effects on electrical and optical properties of pure and aluminum doped tin oxide films.Nucl Instrum Meth Phys Res B2007;258:369-74

[34]

Barzilay M,Rappe AM.Epitaxial TiOx surface in ferroelectric BaTiO3: native structure and dynamic patterning at the atomic scale.Adv Funct Mater2020;30:1902549

[35]

Vogel T,Petzold S.Defect-induced phase transition in hafnium oxide thin films: comparing heavy ion irradiation and oxygen-engineering effects.IEEE Trans Nucl Sci2021;68:1542-7.

[36]

Zheng Y,Zheng Y. In-situ atomic visualization of structural transformation in Hf0.5Zr0.5O2 ferroelectric thin film: from nonpolar tetragonal phase to polar orthorhombic phase. In Proceedings of the 2021 Symposium on VLSI Technology; 13-19 June 2021, Kyoto, Japan. Available from: https://ieeexplore.ieee.org/document/9508736 [Last accessed on 14 Mar 2025]

[37]

Ma LY.Structural polymorphism kinetics promoted by charged oxygen vacancies in HfO2.Phys Rev Lett2023;130:096801

[38]

Liu S.Effects of growth orientations and epitaxial strains on phase stability of HfO2 thin films.Phys Rev Mater2019;3:054404

[39]

Xin T,Cheng Y.Atomic visualization of the emergence of orthorhombic phase in Hf0.5Zr0.5O2 ferroelectric film with in-situ rapid thermal annealing. In Proceedings of the 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits); 12-17 June 2022, Honolulu, HI, USA.

[40]

Grimley ED,Sang X.Structural changes underlying field-cycling phenomena in ferroelectric HfO2 thin films.Adv Elect Mater2016;2:1600173

[41]

Han R,Ning S.The effect of stress on HfO2-based ferroelectric thin films: a review of recent advances.J Appl Phys2023;133:240702

[42]

Saini B,Choi Y.Field-induced ferroelectric phase evolution during polarization “wake-up” in Hf0.5Zr0.5O2 thin film capacitors.Adv Elect Mater2023;9:2300016

[43]

Pešić M,Larcher L.Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors.Adv Funct Mater2016;26:4601-12

[44]

Yang J,Huang J,Liao M.Kinetical phase transition paths and phase stability in ferroelectric HfO2.Scripta Mater2024;242:115953

[45]

Inenaga K,Ishimaru M,Yasuda H.Liquid-mediated crystallization of amorphous GeSn under electron beam irradiation.J Appl Phys2020;127:205304

[46]

Yin X,Huang Q.An ultracompact single-ferroelectric field-effect transistor binary and multibit associative search engine.Adv Intell Syst2023;5:2200428

[47]

Zheng Y,Gao Z.Atomic-scale characterization of defects generation during fatigue in ferroelectric Hf0.5Zr0.5O2 films: vacancy generation and lattice dislocation. In Proceedings of the 2021 IEEE International Electron Devices Meeting (IEDM); 11-16 December 2021, San Francisco, CA, USA.

AI Summary AI Mindmap
PDF

57

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/