Coexistence of ferroelectric and ferrielectric phases in ultrathin antiferroelectric PbZrO3 thin films

Ying Liu , Ranming Niu , Roger Uriach , David Pesquera , José Manuel Caicedo Roque , José Santiso , Julie M. Cairney , Xiaozhou Liao , Jordi Arbiol , Gustau Catalan

Microstructures ›› 2024, Vol. 4 ›› Issue (4) : 2024045

PDF
Microstructures ›› 2024, Vol. 4 ›› Issue (4) :2024045 DOI: 10.20517/microstructures.2024.12
Research Article

Coexistence of ferroelectric and ferrielectric phases in ultrathin antiferroelectric PbZrO3 thin films

Author information +
History +
PDF

Abstract

Whereas ferroelectricity may vanish in ultra-thin ferroelectric films, it is expected to emerge in ultra-thin antiferroelectric films, sparking people’s interest in using antiferroelectric materials as an alternative to ferroelectric ones for high-density data storage applications. Lead Zirconate (PbZrO3, PZO) is considered the prototype material for antiferroelectricity, and indeed, previous studies indicated that nanoscale PZO films exhibit ferroelectricity. The understanding of such phenomena from the microstructure aspect is crucial but still lacking. In this study, we fabricated a PZO film with thicknesses varying from 5 to 80 nm. Using Piezoresponse Force Microscopy, we discovered that the film displayed a transition from antiferroelectric behavior in the thicker areas to ferroelectric behavior in the thinner ones, with a critical thickness between 10 and 15 nm. In this critical thickness range, a 12 nm PZO thin film was chosen for further study using aberration-corrected scanning transmission electron microscopy. The investigation showed that the film comprises both ferroelectric and ferrielectric phases. The ferroelectric phase is characterized by polarization along the [011]pc projection direction. The positions of Pb, Zr, and O were determined using the integrated differential phase contrast method. This allowed us to ascertain that the ferroelectric PZO unit cell is half the size of that in the antiferroelectric phase on the ab plane. The observed unit cell is different from the electric field-induced ferroelectric rhombohedral phases. Additionally, we identified a ferrielectric phase with a unique up-up-zero-zero (↑↑··) dipole configuration. The finding is crucial for understanding the performance of ultrathin antiferroelectric thin films and the subsequent design and development of antiferroelectric devices.

Keywords

(Anti)ferroelectric / ferrielectric / lead zirconate (PbZrO3) / thin films / scanning transmission electron microscopy

Cite this article

Download citation ▾
Ying Liu, Ranming Niu, Roger Uriach, David Pesquera, José Manuel Caicedo Roque, José Santiso, Julie M. Cairney, Xiaozhou Liao, Jordi Arbiol, Gustau Catalan. Coexistence of ferroelectric and ferrielectric phases in ultrathin antiferroelectric PbZrO3 thin films. Microstructures, 2024, 4(4): 2024045 DOI:10.20517/microstructures.2024.12

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kittel C.Theory of antiferroelectric crystals.Phys Rev1951;82:729-32

[2]

Shirane G,Takagi Y.Dielectric properties of lead zirconate.Phys Rev1951;84:476-81

[3]

Sawaguchi E,Hoshino S.Antiferroelectric structure of lead zirconate.Phys Rev1951;83:1078

[4]

Randall CA,Reaney I,Trolier-mckinstry S.Antiferroelectrics: history, fundamentals, crystal chemistry, crystal structures, size effects, and applications.J Am Ceram Soc2021;104:3775-810

[5]

Liu Z,Ye J.Antiferroelectrics for energy storage applications: a review.Adv Mater Technol2018;3:1800111

[6]

Pan WY,Zhang QM.Large displacement transducers based on electric field forced phase transitions in the tetragonal (Pb0.97La0.02)(Ti,Zr,Sn)O3 family of ceramics.J Appl Phys1989;66:6014-23

[7]

Pirc R,Koruza J,Kutnjak Z.Negative electrocaloric effect in antiferroelectric PbZrO3.EPL2014;107:17002

[8]

Tan X,Frederick J,Webber KG.The antiferroelectric ↔ ferroelectric phase transition in lead-containing and lead-free perovskite ceramics.J Am Ceram Soc2011;94:4091-107

[9]

Liu C,Zhang H.Low voltage-driven high-performance thermal switching in antiferroelectric PbZrO3 thin films.Science2023;382:1265-9

[10]

Si Y,Liu C.Antiferroelectric oxide thin-films: fundamentals, properties, and applications.Prog Mater Sci2024;142:101231.

[11]

Chauhan A,Vaish R.Anti-ferroelectric ceramics for high energy density capacitors.Materials2015;8:8009-31 PMCID:PMC5458845

[12]

Liu G,Qi H.Energy storage properties of NaNbO3-based lead-free superparaelectrics with large antiferrodistortion.Microstructures2023;3:2023009

[13]

Roy Chaudhuri A,Hähnel A.Epitaxial strain stabilization of a ferroelectric phase in PbZrO3 thin films.Phys Rev B2011;84:054112

[14]

Liu Y,Majchrowski A.Translational boundaries as incipient ferrielectric domains in antiferroelectric PbZrO3.Phys Rev Lett2023;130:216801

[15]

Yao Y,Tian M.Ferrielectricity in the archetypal antiferroelectric, PbZrO3.Adv Mater2023;35:e2206541

[16]

Jiang RJ,Geng WR.Atomic insight into the successive antiferroelectric-ferroelectric phase transition in antiferroelectric oxides.Nano Lett2023;23:1522-9

[17]

Fu Z,Li Z.Unveiling the ferrielectric nature of PbZrO3-based antiferroelectric materials.Nat Commun2020;11:3809 PMCID:PMC7392892

[18]

Ma T,Xu B.Uncompensated polarization in incommensurate modulations of perovskite antiferroelectrics.Phys Rev Lett2019;123:217602

[19]

Burkovsky RG,Ganzha AE.Field-induced heterophase state in PbZrO3 thin films.Phys Rev B2022;105:125409

[20]

Wei XK,Mayer J.Structural phase transition and in-situ energy storage pathway in nonpolar materials: a review.Materials2021;14:7854 PMCID:PMC8707040

[21]

Jia CL,He JQ.Unit-cell scale mapping of ferroelectricity and tetragonality in epitaxial ultrathin ferroelectric films.Nat Mater2007;6:64-9

[22]

Chisholm MF,Oxley MP,Lee HN.Atomic-scale compensation phenomena at polar interfaces.Phys Rev Lett2010;105:197602

[23]

Hytch MJ,Kilaas R.Quantitative measurement of displacement and strain fields from HREM micrographs.Ultramicroscopy1998;74:131-46.

[24]

Tang YL,Ma XL.Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films.Science2015;348:547-51

[25]

Liu Y,Zhu YL.Large scale two-dimensional flux-closure domain arrays in oxide multilayers and their controlled growth.Nano Lett2017;17:7258-66.

[26]

Liu Y,Niu R.Giant room temperature compression and bending in ferroelectric oxide pillars.Nat Commun2022;13:335 PMCID:PMC8764079

[27]

Nord M,MacLaren I,Holmestad R.Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting.Adv Struct Chem Imaging2017;3:9 PMCID:PMC5306439

[28]

Boldyreva K,Le Rhun G,Alexe M.Microstructure and electrical properties of (120)O-oriented and of (001)O-oriented epitaxial antiferroelectric PbZrO3 thin films on (100) SrTiO3 substrates covered with different oxide bottom electrodes.J Appl Phys2007;102:044111

[29]

Lu H,Buragohain P,Iñiguez J.Probing antiferroelectric-ferroelectric phase transitions in PbZrO3 capacitors by piezoresponse force microscopy.Adv Funct Mater2020;30:2003622

[30]

Corker DL,Dec J,Whatmore RW.A re-investigation of the crystal structure of the perovskite PbZrO3 by X-ray and neutron diffraction.Acta Cryst B1997;53:135-42

[31]

Saeed U,Liu Y.Switching dynamics and improved efficiency of free-standing antiferroelectric capacitors.Adv Electron Mater2024;2400102

[32]

Liu Y,Moss SD,Liao XZ.Atomic coordinates and polarization map around a pair of ½a[01$$\overline{1}$$] dislocation cores produced by plastic deformation in relaxor ferroelectric PIN-PMN-PT.J Appl Phys2021;129:234101

[33]

Cabral MJ,Liao X.Scanning transmission electron microscopy for advanced characterization of ferroic materials.Microstructures2023;3:2023040

[34]

Dmowski W,Farber L.Structure of Pb(Zr,Ti)O3 near the morphotropic phase boundary.AIP Conf Proc2001;582:33-44

[35]

Joseph J,Sivasubramanian V.Structural investigations on Pb(ZrxT1-x)O3 solid solutions using the X-ray rietveld method.J Mater Sci2000;35:1571-5

[36]

Tolédano P.Theory of antiferroelectric phase transitions.Phys Rev B2016;94:014107

[37]

Reyes-Lillo SE.Antiferroelectricity and ferroelectricity in epitaxially strained PbZrO3 from first principles.Phys Rev B2013;88:180102(R)

[38]

Vales-Castro P,Zhao L,Kajewski D.Flexoelectricity in antiferroelectrics.Appl Phys Lett2018;113:132903

[39]

Xu R,Harbola V.Size-induced ferroelectricity in antiferroelectric oxide membranes.Adv Mater2023;35:e2210562

[40]

Mani BK,Lisenkov S.Critical thickness for antiferroelectricity in PbZrO3.Phys Rev Lett2015;115:097601

[41]

Han MJ,Ma DS.Coexistence of rhombohedral and orthorhombic phases in ultrathin BiFeO3 films driven by interfacial oxygen octahedral coupling.Acta Mater2018;145:220-6

[42]

Milesi-Brault C,Constable E.Archetypal soft-mode-driven antipolar transition in francisite Cu3Bi(SeO3)2O2Cl.Phys Rev Lett2020;124:097603

AI Summary AI Mindmap
PDF

53

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/