Electroplating of Ni-W coating on Zn surface for durable Zn ion batteries

Khanothai Choonha-Anothai , Chengwu Yang , Meijing Wang , Zhiqiang Dai , Napat Kiatwisarnkij , Kittima Lolupiman , Xinyu Zhang , Panyawat Wangyao , Jiaqian Qin

Microstructures ›› 2025, Vol. 5 ›› Issue (3) : 2025049

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (3) :2025049 DOI: 10.20517/microstructures.2024.118
Research Article

Electroplating of Ni-W coating on Zn surface for durable Zn ion batteries

Author information +
History +
PDF

Abstract

Aim: Aqueous zinc (Zn)-ion batteries have gained recognition as a promising energy storage solution due to their abundant zinc resources, cost-effectiveness, high energy density, and inherent safety. However, their practical application is significantly limited by issues such as dendrite formation and parasitic side reactions, which undermine the stability, efficiency, and longevity of Zn anodes. Methods: In this study, we present a novel approach by introducing a nanocrystalline nickel-tungsten (Ni-W) coating onto Zn anodes via electrodeposition. This coating acts as a functional interface, regulating Zn dissolution and deposition, suppressing dendrite growth, and minimizing side reactions. Additionally, W enhances Zn2+ ion adsorption, reduces nucleation energy barriers, and promotes uniform Zn growth along the Zn (002) crystallographic plane. Results: The compact morphology of the Ni-W layer further serves as a protective barrier, improving electrode stability during extended cycling. The Ni-0.1W@Zn anode demonstrates outstanding electrochemical performance, achieving over 2,000 h of stable operation at 1 mA cm-2 with a Coulombic efficiency of 98%. In full cell configurations paired with Ni-0.1W@Zn||V2O5, the system retains 81% of its capacity after 1,500 cycles at 1 A g-1. Conclusion: These findings highlight the transformative potential of the Ni-W coating as a scalable and sustainable solution to address the fundamental limitations of Zn anodes, paving the way for advanced and durable energy storage technologies critical to renewable energy systems.

Keywords

Zinc-ion battery / Ni-W coating / anode / electrodeposit

Cite this article

Download citation ▾
Khanothai Choonha-Anothai, Chengwu Yang, Meijing Wang, Zhiqiang Dai, Napat Kiatwisarnkij, Kittima Lolupiman, Xinyu Zhang, Panyawat Wangyao, Jiaqian Qin. Electroplating of Ni-W coating on Zn surface for durable Zn ion batteries. Microstructures, 2025, 5(3): 2025049 DOI:10.20517/microstructures.2024.118

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Arévalo-Cid P,Mendes A.Redox flow batteries: a new frontier on energy storage.Sustain Energy Fuels2021;5:5366-419

[2]

Shin J,Park Y.Aqueous zinc ion batteries: focus on zinc metal anodes.Chem Sci2020;11:2028-44 PMCID:PMC7053421

[3]

Ghosh M,Kurungot S.Dendrite growth suppression by Zn2+-integrated nafion ionomer membranes: beyond porous separators toward aqueous Zn/V2O5 batteries with extended cycle life.Energy Technol2019;7:1900442

[4]

Chen S,Ma L.An asymmetric electrolyte to simultaneously meet contradictory requirements of anode and cathode.Nat Commun2023;14:2925 PMCID:PMC10202929

[5]

Olbasa BW,Chiu SF.High-rate and long-cycle stability with a dendrite-free zinc anode in an aqueous Zn-ion battery using concentrated electrolytes.ACS Appl Energy Mater2020;3:4499-508

[6]

Liu X,Ning F.Fundamental understanding of hydrogen evolution reaction on zinc anode surface: a first-principles study.Nanomicro Lett2024;16:111 PMCID:PMC11250978

[7]

Cai Z,Sun Y.Anode corrosion in aqueous Zn metal batteries.eScience2023;3:100093

[8]

Qin H,Hu N.Building metal-molecule interface towards stable and reversible Zn metal anodes for aqueous rechargeable zinc batteries.Adv Funct Mater2022;32:2206695

[9]

Rosen MA. Battery technology: from fundamentals to thermal behavior and management. 2023. Available from: https://books.google.co.th/books?id=YpGoEAAAQBAJ [Last accessed on 18 Apr 2025]

[10]

Liu Z,He J.Binder-free MnO2 as a high rate capability cathode for aqueous magnesium ion battery.J Alloys Compd2021;869:159279

[11]

Zhang N,Liu X.Towards high-performance aqueous Zn-MnO2 batteries: formation mechanism and alleviation strategies of irreversible inert phases.Compos Part B Eng2023;260:110770

[12]

Hu P,Zhu T.Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life.ACS Appl Mater Interfaces2017;9:42717-22

[13]

He HB,Luo ZX,Chen Y.Sustainable porous biochar coated MnO2 composites as the cathode in aqueous Zn/Mn batteries.J Alloys Compd2023;960:170853

[14]

Feng K,Yu Y.Progress and prospect of Zn anode modification in aqueous zinc-ion batteries: experimental and theoretical aspects.Molecules2023;28:2721 PMCID:PMC10057661

[15]

Chen Y,Zhang S,Shao M.Highly reversible zinc anode enhanced by ultrathin MnO2 cathode material film for high-performance zinc-ion batteries.Adv Mater Inter2020;7:2000510

[16]

Cao J,Qian S.De-passivation and surface crystal plane reconstruction via chemical polishing for highly reversible zinc anodes.Adv Mater2024;36:e2410947

[17]

Shang Z,Liu X,Wang Y.Structural optimization of lithium-ion battery for improving thermal performance based on a liquid cooling system.Int J Heat Mass Transfer2019;130:33-41

[18]

Yang S,Li Y.Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries.Green Energy Environ2023;8:1531-52

[19]

Wang M,Yang C.Boosting de-solvation via halloysite nanotubes-cellulose composite separator for dendrite-free zinc anodes.Mater Today Energy2024;46:101736

[20]

Yin C,Pan Y.Hierarchical spheroidal MOF-derived MnO@C as cathode components for high-performance aqueous zinc ion batteries.J Colloid Interface Sci2023;642:513-22

[21]

Carvalho ML,Temporelli A,Girardi P.Sodium-ion batteries with Ti1Al1TiC1.85 MXene as negative electrode: life cycle assessment and life critical resource use analysis.Sustainability2022;14:5976

[22]

Zhang Y,Niu Z,Xie S.Design of Zn anode protection materials for mild aqueous Zn-ion batteries.Energy Mater2022;2:200012

[23]

Li Y,Li Z,Xie Y.Carbon-based nanomaterials for stabilizing zinc metal anodes towards high-performance aqueous zinc-ion batteries.Energy Storage Mater2024;67:103300

[24]

Liu M,Zhang D.Design on modified-zinc anode with dendrite- and side reactions-free by hydrophobic organic-inorganic hybrids for ultra-stable zinc ion batteries.Nano Energy2022;103:107805

[25]

Zhou X,Cui E.A novel hydrophobic-zincophilic bifunctional layer for stable Zn metal anodes.Energy Storage Mater2023;55:538-45

[26]

Xu W.Recent progress on zinc-ion rechargeable batteries.Nanomicro Lett2019;11:90 PMCID:PMC7770952

[27]

Naveed A,Rasheed T.Revisiting recent and traditional strategies for surface protection of Zn metal anode.J Power Sources2022;525:231122

[28]

Mo F,Chen L.Strategies for stabilization of Zn anodes for aqueous Zn-based batteries: a mini review.Front Chem2021;9:822624 PMCID:PMC8863974

[29]

Kothanam N,Hom-On C.Enhanced particle incorporation for co-electrodeposited Ni-P/diamond coatings with a pulse-stirring technique.App Surf Sci Adv2023;18:100499

[30]

Wilcox G.Electrodeposited zinc alloy coatings.Corros Sci1993;35:1251-8

[31]

Nady H.Electroplated Zn-Ni nanocrystalline alloys as an efficient electrocatalyst cathode for the generation of hydrogen fuel in acid medium.Int J Hydrogen Energy2018;43:4942-50

[32]

Lotfi N,Rahmani H.Zinc-nickel alloy electrodeposition: characterization, properties, multilayers and composites.Prot Met Phys Chem Surf2018;54:1102-40

[33]

Bernasconi R,Firtin G,Nobili L.Electrodeposition of ZnNi alloys from choline chloride/ethylene glycol deep eutectic solvent and pure ethylene glycol for corrosion protection.J Phys Chem B2020;124:10739-51 PMCID:PMC7735728

[34]

Hristova E,Rashkov R,Popov A.Sulphide oxidation on electrodeposited Ni-Mo-W catalysts.Bulg Chem Commun2008;40:291-4Available from: http://www.bcc.bas.bg/bcc_volumes/volume_40_number_3_2008/Volume_40_Number_3_2008_PDF/2826-AC.pdf [Last accessed on 16 Apr 2025]

[35]

Allahyarzadeh M,Rezvanian A,Sabour Rouhaghdam A.Ni-W electrodeposited coatings: characterization, properties and applications.Surf Coat Technol2016;307:978-1010

[36]

Tasić GS,Tasić MM.Influence of electrodeposition parameters of Ni-W on Ni cathode for alkaline water electrolyser.Int J Hydrogen Energy2013;38:4291-7

[37]

Zhang X,Perasinjaroen T.Preparation and hardness of pulse electrodeposited Ni-W-diamond composite coatings.Surf Coat Technol2015;276:228-32

[38]

Kazimierczak H.Induced codeposition of tungsten with zinc from aqueous citrate electrolytes.Coatings2023;13:2001

[39]

Cao J,Yue Y.Strongly coupled tungsten oxide/carbide heterogeneous hybrid for ultrastable aqueous rocking-chair zinc-ion batteries.Chem Eng J2021;426:131893

[40]

Pletcher D. Industrial electrochemistry, 2nd ed. Chapman and Hall; 1990. Available from: https://books.google.co.th/books?id=E_u9ARrm37oC [Last accessed on 18 Apr 2025]

[41]

Sunwang N,Boonyongmaneerat Y.The effects of heat treatments on hardness and wear resistance in Ni-W alloy coatings.Surf Coat Technol2011;206:1096-101

[42]

Elias L.Electrodeposition of laminar coatings of Ni-W alloy and their corrosion behaviour.Surf Coat Technol2015;283:61-9

[43]

Li B,Zhang D.Unveiling the impact of the polypyrrole coating layer thickness on the electrochemical performances of LiNi0.5Co0.2Mn0.3O2 in Li-ion battery.ChemistrySelect2019;4:6354-60

[44]

He H,Wu J.Engineering interfacial layers to enable Zn metal anodes for aqueous zinc-ion batteries.Energy Storage Mater2021;43:317-36

[45]

You Y,Fan M,Li Q.Leveraging novel microwave techniques for tailoring the microstructure of energy storage materials.Microstructures2024;4:2024035

[46]

Baek M,Jeong K.Naked metallic skin for homo-epitaxial deposition in lithium metal batteries.Nat Commun2023;14:1296 PMCID:PMC9998607

[47]

Guo X,Li J.Alleviation of dendrite formation on zinc anodes via electrolyte additives.ACS Energy Lett2021;6:395-403

[48]

Ma L.Zn electrode/electrolyte interfaces of Zn batteries: a mini review.Electrochem Commun2021;122:106898

[49]

Li T,Dong H.Engineering hydrophobic protective layers on zinc anodes for enhanced performance in aqueous zinc-ion batteries.J Energy Chem2024;97:1-11

[50]

Deng S,Zhao J.Advanced design for anti-freezing aqueous zinc-ion batteries.Energy Storage Mater2024;70:103490

[51]

Xu W,Dong Y.Two-dimensional materials for dendrite-free zinc metal anodes in aqueous zinc batteries.Batteries2022;8:293

[52]

Cao J,Zhang D.In-situ ultrafast construction of zinc tungstate interface layer for highly reversible zinc anodes.Angew Chem Int Ed2024;63:e202319661

[53]

Zuo Y,Pei P.Zinc dendrite growth and inhibition strategies.Mater Today Energy2021;20:100692

[54]

Song Z,Kiatwisarnkij N.Polyethylene glycol-protected zinc microwall arrays for stable zinc anodes.ACS Appl Mater Interfaces2024;16:64834-45 PMCID:PMC11615841

[55]

Zhang H,Li Z,Xu B.Surface modification induces oriented Zn(002) deposition for highly stable zinc anode.Batteries2024;10:178

[56]

Yang C,Geng S.Highly reversible Zn anode design through oriented ZnO(002) facets.Adv Mater2024;36:e2408908 PMCID:PMC11619232

[57]

Lim WG,Reed D.Understanding the role of zinc hydroxide sulfate and its analogues in mildly acidic aqueous zinc batteries: a review.Small Methods2024;8:e2300965

[58]

Shang Y.Understanding and performance of the zinc anode cycling in aqueous zinc-ion batteries and a roadmap for the future.Batteries Supercaps2022;5:e202100394

[59]

Luo M,Lu H.Dendrite-free zinc anode enabled by zinc-chelating chemistry.Energy Storage Mater2021;41:515-21

AI Summary AI Mindmap
PDF

216

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/