Recent progress on synthesis and application of plasmonic metal heterostructures

Han Wang , Gina Jinna Chen , Biao Huang , Chenlong Xue , Jianlong Kuang , Longqing Cong , Perry Ping Shum , Yiyao Ge

Microstructures ›› 2025, Vol. 5 ›› Issue (4) : 2025066

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (4) :2025066 DOI: 10.20517/microstructures.2024.117
Review

Recent progress on synthesis and application of plasmonic metal heterostructures

Author information +
History +
PDF

Abstract

In the past decade, plasmonic metal heterostructures have been widely studied for their unique plasmon-enhanced effects and synergistic effects between different constituents. The intriguing properties of plasmonic metal heterostructures arise from the synergistic and/or complementary interactions of their components and the nanoscale interfaces between different materials. In addition, plasmonic metal heterostructures exhibit interesting optical and catalytic properties depending on their composition, shape, size, and architecture. This review provides an overview of the recent progress on the synthesis of plasmonic metal heterostructures including core-shell, core-satellites, Janus, and other typical structures, and then introduces some of the latest applications including surface-enhanced Raman scattering, sensing, and electrocatalysis of these plasmonic metal heterostructures. Finally, the challenges and prospects for the development of novel high-performance plasmonic metal heterostructures in the future are presented.

Keywords

Plasmonic metals / heterostructures / metal nanomaterials

Cite this article

Download citation ▾
Han Wang, Gina Jinna Chen, Biao Huang, Chenlong Xue, Jianlong Kuang, Longqing Cong, Perry Ping Shum, Yiyao Ge. Recent progress on synthesis and application of plasmonic metal heterostructures. Microstructures, 2025, 5(4): 2025066 DOI:10.20517/microstructures.2024.117

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kang G,Guo C,Sibug-Torres SM.Design rules for catalysis in single-particle plasmonic nanogap reactors with precisely aligned molecular monolayers.Nat Commun2024;15:9220 PMCID:PMC11511967

[2]

Zhang X,Zhu B,Yu J.Enhancing photocatalytic H2O2 production with Au co-catalysts through electronic structure modification.Nat Commun2024;15:3212 PMCID:PMC11016070

[3]

Park SH,Park JW,Cha W.In-situ and wavelength-dependent photocatalytic strain evolution of a single Au nanoparticle on a TiO2 film.Nat Commun2024;15:5416 PMCID:PMC11211407

[4]

Kang Y,Lin R.Effect of crystal facets in plasmonic catalysis.Nat Commun2024;15:3923 PMCID:PMC11519563

[5]

Wu H,Chow YL,Zhang J.Toward durable CO2 electroreduction with Cu-based catalysts via understanding their deactivation modes.Adv Mater2024;36:e2403217

[6]

Liu S,Zeng L.Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates.J Am Chem Soc2017;139:2160-3

[7]

Li H,Luo H,Zhu W.Recent developments in metal nanocluster-based catalysts for improving photocatalytic CO2 reduction performance.Microstructures2023;3:2023024

[8]

Qu J,Gao L.Electrochemical carbon dioxide reduction to ethylene: from mechanistic understanding to catalyst surface engineering.Nanomicro Lett2023;15:178 PMCID:PMC10336000

[9]

Wang D,Zhang C.Modulating microenvironments to enhance CO2 electroreduction performance.eScience2023;3:100119

[10]

Niu ZZ,Wu ZZ,Fan MH.CO2-assisted formation of grain boundaries for efficient CO-CO coupling on a derived Cu catalyst.Natl Sci Open2023;2:20220044

[11]

Yuan X,Zhang Q,Liu Z.Z-scheme Bi2WO6/CuBi2O4 heterojunction mediated by interfacial electric field for efficient visible-light photocatalytic degradation of tetracycline.Chem Eng J2019;369:292-301

[12]

Li J,Li B.Nanostructured materials with localized surface plasmon resonance for photocatalysis.Chin Chem Lett2022;33:1154-68

[13]

Wang T,Lin J.Plasmonic photocatalysis: mechanism, applications and perspectives.Chin J Struct Chem2023;42:100066

[14]

Lin W,Palma M.Copper nanowires for electrochemical CO2 reduction reaction.ACS Appl Nano Mater2024;7:27883-98

[15]

Jang YH,Kim S,Chung K.Plasmonic solar cells: from rational design to mechanism overview.Chem Rev2016;116:14982-5034

[16]

Cheng P,Ripka V.Black silver: three-dimensional Ag hybrid plasmonic nanostructures with strong photon coupling for scalable photothermoelectric power generation.ACS Appl Mater Interfaces2022;14:16894-900

[17]

Zhang S,Guo X.Boosting the efficiency of dye-sensitized solar cells by a multifunctional composite photoanode to 14.13 .Angew Chem Int Ed2023;62:e202302753

[18]

Phengdaam A,Ishikawa R.Improvement of organic solar cell performance by multiple plasmonic excitations using mixed-silver nanoprisms.J Sci Adv Mater Dev2021;6:264-70

[19]

Lee S,Moon JI.SERS-based microdevices for use as in vitro diagnostic biosensors.Chem Soc Rev2024;53:5394-427

[20]

Chang K,Wang M.Advances in metal-organic framework-plasmonic metal composites based SERS platforms: engineering strategies in chemical sensing, practical applications and future perspectives in food safety.Chem Eng J2023;459:141539

[21]

Li Z,Zhang Q.1T'-transition metal dichalcogenide monolayers stabilized on 4H-Au nanowires for ultrasensitive SERS detection.Nat Mater2024;23:1355-62

[22]

Liu Y,Han XX.Metal-semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer.Mater Horiz2021;8:370-82

[23]

Belushkin A,Altug H.Nanoparticle-enhanced plasmonic biosensor for digital biomarker detection in a microarray.ACS Nano2018;12:4453-61

[24]

Yang W.Recent advances in the synthesis of intra-nanogap Au plasmonic nanostructures for bioanalytical applications.Adv Mater2020;32:e2002219

[25]

Chen Y,Wang X,Zheng H.Plasmonic/magnetic nanoarchitectures: from controllable design to biosensing and bioelectronic interfaces.Biosens Bioelectron2023;219:114744

[26]

Fan Z,Huang Z.Heterophase fcc-2H-fcc gold nanorods.Nat Commun2020;11:3293 PMCID:PMC7335101

[27]

Linic S,Boerigter C.Photochemical transformations on plasmonic metal nanoparticles.Nat Mater2015;14:567-76

[28]

Ha M,You M,Fan C.Multicomponent plasmonic nanoparticles: from heterostructured nanoparticles to colloidal composite nanostructures.Chem Rev2019;119:12208-78

[29]

Cha SK,Chang T.Au-Ag core-shell nanoparticle array by block copolymer lithography for synergistic broadband plasmonic properties.ACS Nano2015;9:5536-43

[30]

Wang X,Sun M.Facet-controlled synthesis of unconventional-phase metal alloys for highly efficient hydrogen oxidation.J Am Chem Soc2024;146:24141-9

[31]

Ge Y,Chen B.Preparation of fcc-2H-fcc Heterophase Pd@Ir nanostructures for high-performance electrochemical hydrogen evolution.Adv Mater2022;34:e2107399

[32]

Ge Y,Ling C.Phase-selective epitaxial growth of heterophase nanostructures on unconventional 2H-Pd nanoparticles.J Am Chem Soc2020;142:18971-80

[33]

Zhu J,Li JJ,Zhao JW.Plasmonic spectral determination of Hg(II) based on surface etching of Au-Ag core-shell triangular nanoplates: From spectrum peak to dip.Spectrochim Acta A Mol Biomol Spectrosc2019;207:337-47

[34]

Yang XQ,Liu Y,Shao L.Heterostructures built through site-selective deposition on anisotropic plasmonic metal nanocrystals and their applications.Small Struct2021;2:2100101

[35]

Tanwar S,Wu L.Self-assembled bimetallic Au-Ag nanorod vertical array for single molecule plasmonic sensing.ACS Appl Nano Mater2024;7:1636-45 PMCID:PMC12017794

[36]

Wu F,Wei J,Li F.Metallic heterostructures for plasmon-enhanced electrocatalysis.Chemphyschem2023;24:e202200881

[37]

Kuhn AN,Nwabara UO.Engineering silver-enriched copper core-shell electrocatalysts to enhance the production of ethylene and C2+ chemicals from carbon dioxide at low cell potentials.Adv Funct Mater2021;31:2101668

[38]

Kim S,Park JE.Nonnoble-metal-based plasmonic nanomaterials: recent advances and future perspectives.Adv Mater2018;30:e1704528

[39]

Bodelón G,Pérez-Juste J,Liz-Marzán LM.Gold nanoparticles for regulation of cell function and behavior.Nano Today2017;13:40-60

[40]

Ross MB.Aluminum and indium plasmonic nanoantennas in the ultraviolet.J Phys Chem C2014;118:12506-14

[41]

Kim TI,Choi SY.Synthesis of ultrathin metal nanowires with chemically exfoliated tungsten disulfide nanosheets.Nano Lett2020;20:3740-6

[42]

Chen J,Yang F,Zhang Q.Space-confined seeded growth of Cu nanorods with strong surface plasmon resonance for photothermal actuation.Angew Chem Int Ed2019;58:9275-81

[43]

Lu S,Gottheim S.Polymer-directed growth of plasmonic aluminum nanocrystals.J Am Chem Soc2018;140:15412-8

[44]

Robatjazi H,Clark BD.Site-selective nanoreactor deposition on photocatalytic Al nanocubes.Nano Lett2020;20:4550-7

[45]

Shi Y,Zhao M,Nguyen QN.Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications.Chem Rev2021;121:649-735

[46]

Huo D,Lyu Z,Wiley BJ.One-dimensional metal nanostructures: from colloidal syntheses to applications.Chem Rev2019;119:8972-9073

[47]

Zhang L,Sun X.Pt-based electrocatalysts with high atom utilization efficiency: from nanostructures to single atoms.Energy Environ Sci2019;12:492-517

[48]

McGrath AJ,Cheong S.Gold over branched palladium nanostructures for photothermal cancer therapy.ACS Nano2015;9:12283-91

[49]

Chen J,Peng Y.Highly-adaptable optothermal nanotweezers for trapping, sorting, and assembling across diverse nanoparticles.Adv Mater2024;36:e2309143

[50]

Chen J,Meng C.CRISPR-powered optothermal nanotweezers: diverse bio-nanoparticle manipulation and single nucleotide identification.Light Sci Appl2023;12:273 PMCID:PMC10654382

[51]

Feng Q,Guo Y,Wang P.Stochastic DNA walker for electrochemical biosensing sensitized with gold nanocages@graphene nanoribbons.Biosens Bioelectron2018;108:97-102

[52]

Yin BS,Ding SY.Identifying mass transfer influences on Au nanoparticles growth process by centrifugation.Chem Commun2012;48:7353-5

[53]

Boas D,Reches M.Peptide-capped Au and Ag nanoparticles: detection of heavy metals and photochemical core/shell formation.J Colloid Interface Sci2023;631:66-76

[54]

Li ZY,Di Vece M.Three-dimensional atomic-scale structure of size-selected gold nanoclusters.Nature2008;451:46-8

[55]

Qin Y,Wang B,Yao W.Facile synthesis of Ag@Au core-satellite nanowires for highly sensitive SERS detection for tropane alkaloids.J Alloys Compd2021;884:161053

[56]

Hussain S.Incorporation of nanocrystalline silver on carbon nanotubes by electrodeposition technique.Mater Lett2008;62:1874-7

[57]

Khodashenas B.Synthesis of silver nanoparticles with different shapes.Arabian J Chem2019;12:1823-38

[58]

García de Abajo FJ.Colloquium: light scattering by particle and hole arrays.Rev Mod Phys2007;79:1267-90

[59]

El-Nour KM, Eftaiha A, Al-Warthan A, Ammar RA. Synthesis and applications of silver nanoparticles.Arabian J Chem2010;3:135-40

[60]

Zhao Y,Kuang H,Xu C.SERS-active Ag@Au core-shell NP assemblies for DNA detection.RSC Adv2014;4:56052-6

[61]

Zhang P,Wang C.A one-step green route to synthesize copper nanocrystals and their applications in catalysis and surface enhanced Raman scattering.Nanoscale2014;6:5343-50

[62]

Hsia C,Huang MH.Unusually large lattice mismatch-induced optical behaviors of Au@Cu-Cu2O core-shell nanocrystals with noncentrally located cores.Part Part Syst Charact2018;35:1800112

[63]

Roberts FS,Nilsson A.Electroreduction of carbon monoxide over a copper nanocube catalyst: surface structure and pH dependence on selectivity.ChemCatChem2016;8:1119-24

[64]

Jeon HS,Scholten F.Prism-shaped Cu nanocatalysts for electrochemical CO2 reduction to ethylene.ACS Catal2018;8:531-5

[65]

Lee JW,Lee DS.2D single-crystalline copper nanoplates as a conductive filler for electronic ink applications.Small2018;14:1703312

[66]

Hoang TTH,Gold JI,Gewirth AA.Nanoporous copper films by additive-controlled electrodeposition: CO2 reduction catalysis.ACS Catal2017;7:3313-21

[67]

Wang Y,Livi KJT.Copper nanocubes for CO2 reduction in gas diffusion electrodes.Nano Lett2019;19:8461-8

[68]

Nitopi S,Scott SB.Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte.Chem Rev2019;119:7610-72

[69]

Lei Q,Song K.Investigating the origin of enhanced C2+ selectivity in oxide-/hydroxide-derived copper electrodes during CO2 electroreduction.J Am Chem Soc2020;142:4213-22

[70]

Ma Z,Kumar PV.Enhanced electrochemical CO2 reduction of Cu@CuxO nanoparticles decorated on 3D vertical graphene with intrinsic sp3-type defect.Adv Funct Mater2020;30:1910118

[71]

Hang Y,Wu N.Plasmonic silver and gold nanoparticles: shape- and structure-modulated plasmonic functionality for point-of-caring sensing, bio-imaging and medical therapy.Chem Soc Rev2024;53:2932-71 PMCID:PMC11849058

[72]

Huang Z,Hu X.Plasmon-tunable Au@Ag core-shell spiky nanoparticles for surface-enhanced Raman scattering.Nano Res2019;12:449-55

[73]

Qi Y,Zhao J.Tuning the surface enhanced Raman scattering performance of anisotropic Au core-Ag shell hetero-nanostructure: the effect of core geometry.J Alloys Compd2019;776:934-47

[74]

Hsia C,Huang MH.Aqueous phase synthesis of Au-Cu core-shell nanocubes and octahedra with tunable sizes and noncentrally located cores.Chem Mater2016;28:3073-9

[75]

Lyu Z,Aldama E.Au@Cu core-shell nanocubes with controllable sizes in the range of 20-30 nm for applications in catalysis and plasmonics.ACS Appl Nano Mater2019;2:1533-40

[76]

Wang Y,Xue R.Highly stable, stretchable, and transparent electrodes based on dual-headed Ag@Au core-sheath nanomatchsticks for non-enzymatic glucose biosensor.Nano Res2023;16:1558-67

[77]

Zhong Y,Song Z.Adjusting local CO confinement in porous-shell Ag@Cu catalysts for enhancing C-C coupling toward CO2 eletroreduction.Nano Lett2022;22:2554-60

[78]

Zhang S,Qu D.Electrochemical reduction of CO2 Toward C2 valuables on Cu@Ag core-shell tandem catalyst with tunable shell thickness.Small2021;17:e2102293

[79]

Wu X,Jiang Z.Engineering the inter-island plasmonic coupling in homometallic Au-Aun core-satellite structures.Nano Res2023;16:10690-7

[80]

Yin Z,Song C.Hybrid Au-Ag nanostructures for enhanced plasmon-driven catalytic selective hydrogenation through visible light irradiation and surface-enhanced Raman scattering.J Am Chem Soc2018;140:864-7

[81]

Yang Y,Zhao J,Li JJ.Growth of spherical gold satellites on the surface of Au@Ag@SiO2 core-shell nanostructures used for an ultrasensitive SERS immunoassay of alpha-fetoprotein.ACS Appl Mater Interfaces2019;11:3617-26

[82]

Zhang X,Duan H,Yang H.Janus nanoparticles: from fabrication to (bio)applications.ACS Nano2021;15:6147-91

[83]

Xu Y,Jing X,Zhao Y.SERS-active composites with Au-Ag Janus nanoparticles/perovskite in immunoassays for staphylococcus aureus enterotoxins.ACS Appl Mater Interfaces2022;14:3293-301

[84]

Woessner ZJ.Symmetry-reduced metal nanostructures offer new opportunities in plasmonics and catalysis.J Phys Chem C2021;125:23587-96

[85]

Agrawal G.Janus nanoparticles: recent advances in their interfacial and biomedical applications.ACS Appl Nano Mater2019;2:1738-57

[86]

Qiu J,Lyu Z,Liu H.General approach to the synthesis of heterodimers of metal nanoparticles through site-selected protection and growth.Nano Lett2019;19:6703-8

[87]

Feng J,Wang X,Li Z.Self-aligned anisotropic plasmonic nanostructures.Adv Mater2019;31:e1900789

[88]

Wang J,Cai Y,Chen HY.A plasmonic Au-Ag janus nanoprobe for monitoring endogenous hydrogen sulfide generation in living cells.Biosens Bioelectron2022;213:114422

[89]

Xu Y,Zhao Y.Tunable preparation of SERS-active Au-Ag Janus@Au NPs for label-free staphylococcal enterotoxin C detection.J Agric Food Chem2023;71:1224-33

[90]

Zeng P,Zhang G.Atom absorption energy directed symmetry-breaking synthesis of Au-Ag hierarchical nanostructures and their efficient photothermal conversion.Small2022;18:e2204748

[91]

Wu GF,Weng GJ,Li JJ.Morphology and optical properties of Au-Ag hybrid nanoparticles regulation and its ultra-sensitive SERS immunoassay detection in carbohydrate antigen 19-9.Talanta2024;275:126131

[92]

Fan X,Jia J.Tuning Au-Cu Janus structures through strong ligand-mediated interfacial energy control.Chem Mater2022;34:6057-67

[93]

Zhang T,Zang Y,Li Y.A selectivity switch for CO2 electroreduction by continuously tuned semi-coherent interface.Chem2024;10:2745-60

[94]

Huang J,Oveisi E,Buonsanti R.Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag-Cu nanodimers.J Am Chem Soc2019;141:2490-9

[95]

Ma Y,Sun M.Confined growth of silver-copper Janus nanostructures with {100} facets for highly selective tandem electrocatalytic carbon dioxide reduction.Adv Mater2022;34:e2110607

[96]

Fleischmann M,Mcquillan A.Raman spectra of pyridine adsorbed at a silver electrode.Chem Phys Lett1974;26:163-6

[97]

Dong S,Zhang Q.Early cancer detection by serum biomolecular fingerprinting spectroscopy with machine learning.eLight2023;3:51

[98]

Arabi M,Wang Y.Chiral molecular imprinting-based SERS detection strategy for absolute enantiomeric discrimination.Nat Commun2022;13:5757 PMCID:PMC9525700

[99]

Hu J,Xue C.RSPSSL: a novel high-fidelity Raman spectral preprocessing scheme to enhance biomedical applications and chemical resolution visualization.Light Sci Appl2024;13:52 PMCID:PMC10876988

[100]

Wang X,Chen C.Non-invasive detection of systemic lupus erythematosus using SERS serum detection technology and deep learning algorithms.Spectrochim Acta A Mol Biomol Spectrosc2024;320:124592

[101]

Yang J,Luo C.Application of serum SERS technology combined with deep learning algorithm in the rapid diagnosis of immune diseases and chronic kidney disease.Sci Rep2023;13:15719 PMCID:PMC10514316

[102]

Chen J,Xue C.Combined mutual learning net for raman spectral microbial strain identification.Anal Chem2024;96:5824-31

[103]

Yi L,Wu J.Micro-macro SERS strategy for highly sensitive paper cartridge with trace-level molecular detection.Biosens Bioelectron2024;264:116665

[104]

Cardellini J,De Santis I.Hybrid lipid-AuNP clusters as highly efficient SERS substrates for biomedical applications.Nat Commun2024;15:7975 PMCID:PMC11392932

[105]

Hopper ER,Asselin J,Ringe E.Opportunities and challenges for alternative nanoplasmonic metals: magnesium and beyond.J Phys Chem C Nanomater Interfaces2022;126:10630-43 PMCID:PMC9272400

[106]

Jiang N,Wang J.Active plasmonics: principles, structures, and applications.Chem Rev2018;118:3054-99

[107]

Li JF,Ding SY,Tian ZQ.Core-shell nanoparticle-enhanced Raman spectroscopy.Chem Rev2017;117:5002-69

[108]

Yang Y,Fu ZW.Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity.J Am Chem Soc2014;136:8153-6

[109]

Du HF,Weng GJ,Li X.Site-selective growth and plasmonic spectral properties of L-shaped Janus Au-Ag gold nanodumbbells for surface-enhanced Raman scattering.Spectrochim Acta A Mol Biomol Spectrosc2023;299:122862

[110]

Hao HL,Weng GJ,Guo YB.Exclusive core-Janus satellite assembly based on Au-Ag Janus self-aligned distributions with abundant hotspots for ultrasensitive detection of CA19-9.ACS Sens2024;9:942-54

[111]

Zhang W,Niu W,Lu X.Tip-selective growth of silver on gold nanostars for surface-enhanced Raman scattering.ACS Appl Mater Interfaces2018;10:14850-6

[112]

Wang Z,Wang J.Site-specific growth of Ag islands on concave Au nanocubes for SERS and LSPR-based applications.ACS Appl Nano Mater2024;7:22002-10

[113]

Eustis S.Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes.Chem Soc Rev2006;35:209-17

[114]

Zhao X,Jia Y.Block copolymer-templated surface-enhanced Raman scattering-active nanofibers for hydrogen sulfide detection.Talanta2024;270:125608

[115]

Gandra N,Tian L.Plasmonic planet-satellite analogues: hierarchical self-assembly of gold nanostructures.Nano Lett2012;12:2645-51

[116]

Le T,Gwon Y,Lee S.Fiber-optic sensing system using polyhedral plasmonic nanostructures as SERS-active substrates.ACS Appl Nano Mater2024;7:21114-23

[117]

Ding Z,Li Z,Ma Q.Sulfur dots/Au@Ag nanorods array-based polarized ECL sensor for the detection of thyroid cancer biomarker.Talanta2023;265:124925

[118]

Zhao CQ,Wu KW,Xu JJ.Plasmonic enhanced gold nanoclusters-based photoelectrochemical biosensor for sensitive alkaline phosphatase activity analysis.Anal Chem2020;92:6886-92

[119]

Zhang WS,Xu ZR.High sensitivity and non-background SERS detection of endogenous hydrogen sulfide in living cells using core-shell nanoparticles.Anal Chim Acta2020;1094:106-12

[120]

Zhu X,Li Q,Wang J.Gold nanobipyramid-supported silver nanostructures with narrow plasmon linewidths and improved chemical stability.Adv Funct Mater2016;26:341-52

[121]

He Z,Li X,Li JJ.Au@Ag nanopencil with Au tip and Au@Ag rod: multimodality plasmonic nanoprobe based on asymmetric etching for the detection of SCN- and ClO-.Small2023;19:e2302302

[122]

Brongersma ML,Nordlander P.Plasmon-induced hot carrier science and technology.Nat Nanotechnol2015;10:25-34

[123]

Lee H,Song K.Surface plasmon-induced hot carriers: generation, detection, and applications.Acc Chem Res2022;55:3727-37

[124]

DuChene JS,Welch AJ,Atwater HA.Hot hole collection and photoelectrochemical CO2 reduction with plasmonic Au/p-GaN photocathodes.Nano Lett2018;18:2545-50

[125]

Song K,Lee M.Plasmonic hot hole-driven water splitting on Au nanoprisms/P-type GaN.ACS Energy Lett2021;6:1333-9

[126]

Corson ER,Cooper JK,Urban JJ.Reduction of carbon dioxide at a plasmonically active copper-silver cathode.Chem Commun2020;56:9970-3

AI Summary AI Mindmap
PDF

249

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/