PDF
Abstract
Metastable perovskite oxides, with their complex atomic arrangements and nonequilibrium electronic structures, show great potential in fields such as energy conversion, storage, advanced optoelectronics, and intelligent sensing. Compared to conventional perovskites, metastable structures exhibit unique local symmetry breaking and oxygen vacancy modulation, high defect concentrations and tunable electronic structures. These features provide significant advantages in enhancing interfacial catalytic activity, ion transport, and photoelectric performance. However, their nonequilibrium structures tend to transform into more thermodynamically stable phases under typical synthesis conditions, complicating the study of their structure-property relationships and synthesis. This review adopts a structural materials perspective to analyze the unique advantages and structure-performance correlations of metastable perovskite oxides. Key concepts are introduced, categorizing these oxides based on their structural characteristics into four groups: symmetry-distorted type, Heterojunction type, Layered type, and Multivalent-regulated type, focusing on their impact on physicochemical properties. Major synthesis strategies, such as solid-state synthesis, high-pressure synthesis, pulsed laser deposition, salt-assisted method, and wet chemical approach, are systematically reviewed, highlighting their effectiveness in stabilizing metastable phases. The review also summarizes recent advancements in metastable perovskites, encompassing their types, structural features, synthesis methods, and applications, while identifying key challenges and future prospects in energy and information technologies.
Keywords
Metastable material
/
perovskite oxide
/
nonequilibrium structure
/
structural engineering
/
synthetic strategy
Cite this article
Download citation ▾
Yutong Feng, Jiao Dai, Mingjie Wang, Wanting Ding, Hanyuan Zhang, Weilin Xu, Jun Wan.
Unraveling metastable perovskite oxides insights from structural engineering to synthesis paradigms.
Microstructures, 2025, 5(4): 2025068 DOI:10.20517/microstructures.2024.115
| [1] |
Sun C,Bian J.Recent Advances in perovskite-type oxides for energy conversion and storage applications.Adv Energy Mater2021;11:2000459
|
| [2] |
Luo D,Dumont A,Lu ZH.Recent progress on perovskite surfaces and interfaces in optoelectronic devices.Adv Mater2021;33:e2006004
|
| [3] |
Bui TH.Perovskite materials for sensing applications: recent advances and challenges.Microchem J2023;191:108924
|
| [4] |
Liu Y,Yuan X.Atomistic origins of surface defects in CH3NH3PbBr3 perovskite and their electronic structures.ACS Nano2017;11:2060-5
|
| [5] |
Xian J,Wu Z.Microwave shock motivating the Sr substitution of 2D porous GdFeO3 perovskite for highly active oxygen evolution.J Energy Chem2024;88:232-41
|
| [6] |
Shin SS,Seok SI.Metal oxide charge transport layers for efficient and stable perovskite solar cells.Adv Funct Mater2019;29:1900455
|
| [7] |
Hwang J,Giordano L,Yu Y.Perovskites in catalysis and electrocatalysis.Science2017;358:751-6
|
| [8] |
Sun Q.Thermodynamic stability trend of cubic perovskites.J Am Chem Soc2017;139:14905-8
|
| [9] |
Zhang F,Yao C.Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells.Science2022;375:71-6
|
| [10] |
Buin A,Xu J,Sargent EH.Halide-dependent electronic structure of organolead perovskite materials.Chem Mater2015;27:4405-12
|
| [11] |
Liu G,Kong L.Isothermal pressure-derived metastable states in 2D hybrid perovskites showing enduring bandgap narrowing.Proc Natl Acad Sci U S A2018;115:8076-81 PMCID:PMC6094100
|
| [12] |
Mai H,Tachibana Y,Abe R.Developing sustainable, high-performance perovskites in photocatalysis: design strategies and applications.Chem Soc Rev2021;50:13692-729
|
| [13] |
Deng Z,Chen D.Anti-perovskite materials for energy storage batteries.InfoMat2022;4:e12252
|
| [14] |
Jonderian A,Mccalla E.Metastability in Li-La-Ti-O perovskite materials and its impact on ionic conductivity.Chem Mater2021;33:4792-804
|
| [15] |
Fu Y,Chen J.Selective Stabilization and photophysical properties of metastable perovskite polymorphs of CsPbI3 in thin films.Chem Mater2017;29:8385-94
|
| [16] |
Fan M,Fang G.Microwave-pulse assisted synthesis of tunable ternary-doped 2D molybdenum carbide for efficient hydrogen evolution.Chem Synth2024;4:36
|
| [17] |
Shi Y,Ma Z,Wang K.Structural regulation and optical behavior of three-dimensional metal halide perovskites under pressure.J Mater Chem C2020;8:12755-67
|
| [18] |
Wu Z,Jiang H.Harnessing the unconventional cubic phase in 2D LaNiO3 perovskite for highly efficient urea oxidation.Angew Chem Int Ed Engl2025;64:e202413932
|
| [19] |
El-Ballouli AO,Mohammed OF.Structurally tunable two-dimensional layered perovskites: from confinement and enhanced charge transport to prolonged hot carrier cooling dynamics.J Phys Chem Lett2020;11:5705-18 PMCID:PMC7467744
|
| [20] |
Sun W,Ong SP.The thermodynamic scale of inorganic crystalline metastability.Sci Adv2016;2:e1600225 PMCID:PMC5262468
|
| [21] |
Wu Z,Dai J.Microwave-pulse synthesis of tunable 2D porous nickel-enriched LaMnxNi1-xO3 solid solution for efficient electrocatalytic urea oxidation.J Mater Chem A2024;12:7047-57
|
| [22] |
Hong Y,Bak J.Local-electrostatics-induced oxygen octahedral distortion in perovskite oxides and insight into the structure of Ruddlesden-Popper phases.Nat Commun2021;12:5527 PMCID:PMC8452630
|
| [23] |
Marronnier A,Boyer-Richard S.Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells.ACS Nano2018;12:3477-86
|
| [24] |
Ning M,Wan J.Dynamic active sites in electrocatalysis.Angew Chem Int Ed Engl2024;63:e202415794 PMCID:PMC11610695
|
| [25] |
Ji R,Hofstetter YJ.Perovskite phase heterojunction solar cells.Nat Energy2022;7:1170-9
|
| [26] |
Jin H,Paik U.Metastable two-dimensional materials for electrocatalytic energy conversions.Acc Mater Res2021;2:559-73
|
| [27] |
Jiang H,Xiao Z.The rapid production of multiple transition metal carbides via microwave combustion under ambient conditions.Nanoscale2020;12:16245-52
|
| [28] |
Ofoegbuna T,da Silva Moura N.Modifying metastable Sr1-xBO3-δ (B = Nb, Ta, and Mo) perovskites for electrode materials.ACS Appl Mater Interfaces2021;13:29788-97 PMCID:PMC8289236
|
| [29] |
Yongfei Y,Miao F.Leveraging novel microwave techniques for tailoring the microstructure of energy storage materials.Microstructures 4:2024035
|
| [30] |
Wan J,Fang G.Microwave-assisted exploration of the electron configuration-dependent electrocatalytic urea oxidation activity of 2D porous NiCo2O4 spinel.J Energy Chem2024;91:226-35
|
| [31] |
Li B,Fu L.Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells.Nat Commun2018;9:1076 PMCID:PMC5852044
|
| [32] |
Wan J,Mi S.Metastable 2D amorphous Nb2O5 for aqueous supercapacitor energy storage.Chem Eng J2024;488:150912
|
| [33] |
Wan J,Li J.A universal construction of robust interface between 2D conductive polymer and cellulose for textile supercapacitor.Carbohydr Polym2022;284:119230
|
| [34] |
Bartel CJ,Goldsmith BR.New tolerance factor to predict the stability of perovskite oxides and halides.Sci Adv2019;5:eaav0693 PMCID:PMC6368436
|
| [35] |
Yao H,Li Z,Jin Z.Research and progress of black metastable phase CsPbI3 solar cells.Mater Chem Front2021;5:1221-35
|
| [36] |
Li Q,Wu Z.Advanced microwave strategies facilitate structural engineering for efficient electrocatalysis.ChemSusChem2024;17:e202301874
|
| [37] |
Hu R,Xian J.Microwave-pulse sugar-blowing assisted synthesis of 2D transition metal carbides for sustainable hydrogen evolution.Appl Catal B- Environ2022;317:121728
|
| [38] |
Barone C,Mauro C.Unravelling the low-temperature metastable state in perovskite solar cells by noise spectroscopy.Sci Rep2016;6:34675 PMCID:PMC5050427
|
| [39] |
Varignon J,Zunger A.Origin of band gaps in 3D perovskite oxides.Nat Commun2019;10:1658 PMCID:PMC6458163
|
| [40] |
Gao B,Zhou Z.An intriguing canting dipole configuration and its evolution under an electric field in La-doped Pb(Zr,Sn,Ti)O3 perovskites.Microstructures2022;2:2022010
|
| [41] |
Halder S,Maity R,Sinha T.Investigating the optical, photosensitivity and photocatalytic properties of double perovskites A2LuTaO6 (A = Ba, Sr): a combined experimental and density functional theory study.Ceram Int2019;45:15496-504
|
| [42] |
Basavarajappa MG.Rationalization of double perovskite oxides as energy materials: a theoretical insight from electronic and optical properties.ACS Mater Au2022;2:655-64 PMCID:PMC9928412
|
| [43] |
He R,Liu S,Zhong Z.Ferroelectric structural transition in hafnium oxide induced by charged oxygen vacancies.Phys Rev B2021;104
|
| [44] |
Liu L,Liu S.Unraveling the trade-off between oxygen vacancy concentration and ordering of perovskite oxides for efficient lattice oxygen evolution.Adv Energy Mater2025;15:2402967
|
| [45] |
Navrotsky A.Energetics and crystal chemical systematics among ilmenite, lithium niobate, and perovskite structures.Chem Mater1998;10:2787-93
|
| [46] |
Ciccioli A.Thermodynamics and the intrinsic stability of lead halide perovskites CH3NH3PbX3.J Phys Chem Lett2018;9:3756-65
|
| [47] |
Fransson E,Wiktor J.Revealing the free energy landscape of halide perovskites: metastability and transition characters in CsPbBr3 and MAPbI3.Chem Mater2023;35:8229-38
|
| [48] |
Lopes PP,Rui X.Dynamically stable active sites from surface evolution of perovskite materials during the oxygen evolution reaction.J Am Chem Soc2021;143:2741-50
|
| [49] |
Lyu H,Lin Z.Two-stage dynamic transformation from δ- to α-CsPbI3.J Phys Chem Lett2024;15:2228-32
|
| [50] |
Makovec D,Meden A.Ferroelectric bismuth-titanate nanoplatelets and nanowires with a new crystal structure.Nanoscale2022;14:3537-44
|
| [51] |
Kim HJ,Kim S.Low-temperature crystallization of LaFeO3 perovskite with inherent catalytically surface for the enhanced oxygen evolution reaction.Nano Energy2023;105:108003
|
| [52] |
O’Donnell S,Maggard PA.Metastability and photoelectrochemical properties of Cu2SnO3 and Cu2-xLixTiO3: two Cu(I)-based oxides with delafossite structures.Chem Mater2023;35:1404-16
|
| [53] |
Wang Y,Shen J,Wolverton C.Landscape of thermodynamic stabilities of A2BB’O6 compounds.Chem Mater2024;36:6816-30
|
| [54] |
Yu H,Goodsite M.Advancing direct seawater electrocatalysis for green and affordable hydrogen.One Earth2023;6:267-77.
|
| [55] |
Datta K,Chen J,Mihailova B.Atomic-level structural correlations across the morphotropic phase boundary of a ferroelectric solid solution: xBiMg1/2Ti1/2O3-(1 - x)PbTiO3.Sci Rep2017;7:471 PMCID:PMC5428731
|
| [56] |
Zhang H,Zhai Z.Revealing unusual bandgap shifts with temperature and bandgap renormalization effect in phase-stabilized metal halide perovskite thin films.Adv Funct Mater2024;34:2302214
|
| [57] |
Asl H, Manthiram A. Proton-induced disproportionation of jahn-teller-active transition-metal ions in oxides due to electronically driven lattice instability.J Am Chem Soc2020;142:21122-30
|
| [58] |
Klein J,Mockenhaupt B,Strunk J.Limitations of the tauc plot method.Adv Funct Mater2023;33:2304523
|
| [59] |
Nova TF,Fechner M.Metastable ferroelectricity in optically strained SrTiO3.Science2019;364:1075-9
|
| [60] |
Li X,Zhang J.Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3.Science2019;364:1079-82
|
| [61] |
Kim JR,Go KJ.Stabilizing hidden room-temperature ferroelectricity via a metastable atomic distortion pattern.Nat Commun2020;11:4944 PMCID:PMC7532175
|
| [62] |
Kawamoto T,Yamada I.Room-temperature polar ferromagnet ScFeO3 transformed from a high-pressure orthorhombic perovskite phase.J Am Chem Soc2014;136:15291-9
|
| [63] |
Zhang X,Chang X.FeO6 octahedral distortion activates lattice oxygen in perovskite ferrite for methane partial oxidation coupled with CO2 splitting.J Am Chem Soc2020;142:11540-9
|
| [64] |
Gabilondo EA,Broughton R.Switching lead for tin in PbHfO3: noncubic structure of SnHfO3.Angew Chem Int Ed Engl2024;63:e202312130
|
| [65] |
Zhao M,Han Y.Metastable γ-Li2TiTeO6: negative chemical pressure interception and polymorph tuning of SHG.Chem Mater2022;34:10153-61
|
| [66] |
Zhao M,Sun Z.Methodological approach to the high-pressure synthesis of nonmagnetic Li2B4+B’6+O6 oxides.Chem Mater2022;34:186-96
|
| [67] |
Schlom DG,Pan X,Zurbuchen MA.A thin film approach to engineering functionality into oxides.J Am Ceram Soc2008;91:2429-54
|
| [68] |
O’donnell S,Carbone A,Jones JL.Pushing the limits of metastability in semiconducting perovskite oxides for visible-light-driven water oxidation.Chem Mater2020;32:3054-64
|
| [69] |
Dastidar S,Dillon AD,Spanier JE.Quantitative phase-change thermodynamics and metastability of perovskite-phase cesium lead iodide.J Phys Chem Lett2017;8:1278-82
|
| [70] |
Gao R,Xu H.Interfacial octahedral rotation mismatch control of the symmetry and properties of SrRuO3.ACS Appl Mater Interfaces2016;8:14871-8
|
| [71] |
Anderson TJ,Zhou H.Metastable honeycomb SrTiO3/SrIrO3 heterostructures.Appl Phys Lett2016;108:151604
|
| [72] |
Jiang Z,Song D.Metastable SrRuO3 phases with lattice-dependent magnetic anisotropy by tailoring interfacial oxygen octahedral coupling.Ceram Int2022;48:16825-31
|
| [73] |
Jaffe A,Lin Y,Neaton JB.High compression-induced conductivity in a layered Cu-Br perovskite.Angew Chem Int Ed Engl2020;59:4017-22
|
| [74] |
Ming W,Li T,Du MH.Formation and diffusion of metal impurities in perovskite solar cell material CH3NH3PbI3: implications on solar cell degradation and choice of electrode.Adv Sci (Weinh)2018;5:1700662 PMCID:PMC5827569
|
| [75] |
Shi Y,Lou Y.Strategies of perovskite mechanical stability for flexible photovoltaics.Mater Chem Front2021;5:7467-78
|
| [76] |
Zhou G,Zhao J.Two-dimensional-layered perovskite ALaTa2O7:Bi3+ (A = K and Na) phosphors with versatile structures and tunable photoluminescence.ACS Appl Mater Interfaces2018;10:24648-55
|
| [77] |
Pravarthana D,David A.Metastable monoclinic [110] layered perovskite Dy2Ti2O7 thin films for ferroelectric applications.RSC Adv2019;9:19895-904 PMCID:PMC9065425
|
| [78] |
Shao Z,Roussel P.Stability limit of the layered-perovskite structure in Ln2Ti2O7 (Ln = lanthanide) thin films grown on (110)-oriented SrTiO3 substrates by the sol-gel route.J Mater Chem2012;22:24894
|
| [79] |
Shao Z,Ferri A.Evidence of ferroelectricity in metastable Sm2Ti2O7 thin film.J Mater Chem2012;22:9806
|
| [80] |
Katsumata T,Kimura Y.Development of electrochemical anion doping technique for expansion of functional material exploration.Adv Funct Materials2023;33:2307116
|
| [81] |
Liu R,Niu W.Light-induced mott-insulator-to-metal phase transition in ultrathin intermediate-spin ferromagnetic perovskite ruthenates.Adv Mater2023;35:e2211612
|
| [82] |
Waidha AI,Lepple M.BaCoO2+δ: a new highly oxygen deficient perovskite-related phase with unusual Co coordination obtained by high temperature reaction with short reaction times.Chem Commun (Camb)2019;55:2920-3
|
| [83] |
Stoica VA,Das S.Non-equilibrium pathways to emergent polar supertextures.Nat Mater2024;23:1394-401
|
| [84] |
Kim H.Importance of tailoring lattice strain in halide perovskite crystals.NPG Asia Mater2020;12:265
|
| [85] |
Jin B,Yuan R,Wu C.Strain relaxation for perovskite lattice reconfiguration.Adv Energ Sust Res2023;4:2200143
|
| [86] |
Navas D,Castro-Alvarez A.Review on sol-gel synthesis of perovskite and oxide nanomaterials.Gels2021;7:275 PMCID:PMC8700921
|
| [87] |
Lei Y,Ye S.Engineering defect-rich Fe-doped NiO coupled Ni cluster nanotube arrays with excellent oxygen evolution activity.Appl Catal B-Environ2021;285:119809
|
| [88] |
Zheng L,Hou Y.A universal all-solid synthesis for high throughput production of halide perovskite.Nat Commun2022;13:7399 PMCID:PMC9715688
|
| [89] |
Zeng Y,He T.Selective formation of metastable polymorphs in solid-state synthesis.Sci Adv2024;10:eadj5431 PMCID:PMC10793945
|
| [90] |
Mueller DN,Yoo H.Phase stability and oxygen nonstoichiometry of highly oxygen-deficient perovskite-type oxides: a case study of (Ba,Sr)(Co,Fe)O3-δ.Chem Mater2012;24:269-74
|
| [91] |
Falmbigl M,Golovina IS.Evidence of extended cation solubility in atomic layer deposited nanocrystalline BaTiO3 thin films and its strong impact on the electrical properties.Nanoscale2018;10:12515-25
|
| [92] |
Yamazoe S,Shibata K,Wada T.Synthetic mechanism of perovskite-type KNbO3 by modified solid-state reaction process.Chem Mater2011;23:4498-504
|
| [93] |
Usiskin RE,Wang RY,Haile SM.Bulk properties of the oxygen reduction catalyst SrCo0.9Nb0.1O3-δ.Chem Mater2016;28:2599-608
|
| [94] |
Uusi-esko K.Extensive series of hexagonal and orthorhombic RMnO3 (R = Y, La, Sm, Tb, Yb, Lu) thin films by atomic layer deposition.Chem Mater2011;23:1835-40
|
| [95] |
Bora T,Al-hinai AT,Jantzen CM.Phase transformation of metastable ZnSnO3 upon thermal decomposition by in-situ temperature-dependent raman spectroscopy.J Am Ceram Soc2015;98:4044-9
|
| [96] |
Xu F,Dai Y,Li Z.Halide perovskites and high-pressure technologies: a fruitful encounter.Mater Chem Front2023;7:2102-19
|
| [97] |
Yamada I,Asai K.High-pressure synthesis of highly oxidized Ba0.5Sr0.5Co0.8Fe0.2O3-δ cubic perovskite.Mater Chem Front2019;3:1209-17
|
| [98] |
Ishiwata S,Taguchi Y.High-pressure hydrothermal crystal growth and multiferroic properties of a perovskite YMnO3.J Am Chem Soc2011;133:13818-20
|
| [99] |
Inaguma Y,Shirako Y.High-pressure synthesis, crystal structure, and phase stability relations of a LiNbO3-type polar titanate ZnTiO3 and its reinforced polarity by the second-order Jahn-Teller effect.J Am Chem Soc2014;136:2748-56
|
| [100] |
Fujita K,Yamada I.LiNbO3-type InFeO3: room-temperature polar magnet without second-order Jahn-Teller active ions.Chem Mater2016;28:6644-55
|
| [101] |
Khalyavin DD,Vyshatko NP.Crystal structure of metastable perovskite Bi(Mg1/2Ti1/2)O3: Bi-based structural analogue of antiferroelectric PbZrO3.Chem Mater2006;18:5104-10
|
| [102] |
Khalyavin DD,Fertman EL.The phenomenon of conversion polymorphism in Bi-containing metastable perovskites.Chem Commun (Camb)2019;55:4683-6
|
| [103] |
Yan L,Bridges CA.Unit-cell-level assembly of metastable transition-metal oxides by pulsed-laser deposition.Angew Chem Int Ed Engl2007;46:4539-42
|
| [104] |
Fan X,Guo Z.Microstructure and photoluminescence properties of ZnO thin films grown by PLD on Si (111) substrates.Appl Surf Sci2005;239:176-81
|
| [105] |
Masood KB,Malik MA.A comprehensive tutorial on the pulsed laser deposition technique and developments in the fabrication of low dimensional systems and nanostructures.Emergent Mater2021;4:737-54
|
| [106] |
Wu X,Zhang M.Binary Pd/amorphous-SrRuO3 hybrid film for high stability and fast activity recovery ethanol oxidation electrocatalysis.Nano Energy2020;67:104247
|
| [107] |
Schraknepper H,Dittmann R.Complex behaviour of vacancy point-defects in SrRuO3 thin films.Phys Chem Chem Phys2015;17:1060-9
|
| [108] |
Langenberg E,Maurel L.Epitaxial stabilization of the perovskite phase in (Sr1-xBax)MnO3 Thin Films.ACS Appl Mater Interfaces2015;7:23967-77
|
| [109] |
Zhou C,Dickey EC,Salvador PA.Epitaxial stabilization and persistent nucleation of the 3C polymorph of Ba0.6Sr0.4MnO3.ACS Appl Mater Interfaces2024;16:4873-85 PMCID:PMC10835664
|
| [110] |
Wang Q,Chen C,Pan F.Realizing metastable cobaltite perovskite via proton-induced filling of oxygen vacancy channels.ACS Appl Mater Interfaces2023;15:1574-82
|
| [111] |
Chen J,Dong H.Pressure induced unstable electronic states upon correlated nickelates metastable perovskites as batch synthesized via heterogeneous nucleation.Adv Funct Mater2020;30:2000987
|
| [112] |
Enoch CM,Marbaniang P,Swami A.Molten salt-directed synthesis of strontium manganese perovskite oxide: an active electrocatalyst for the oxygen reduction reaction and oxygen evolution reaction.J Mater Chem A2023;11:21780-92
|
| [113] |
Nikam AV,Kulkarni AA.Wet chemical synthesis of metal oxide nanoparticles: a review.Crystengcomm2018;20:5091-107
|
| [114] |
Muñoz A,Alonso J A.Complex magnetism and magnetic structures of the metastable homno3 perovskite.Inorg Chem2001;40:1020-8.
|
| [115] |
Yan F,Chen J.Revealing the role of interfacial heterogeneous nucleation in the metastable thin film growth of rare-earth nickelate electronic transition materials.Phys Chem Chem Phys2022;24:9333-44
|
| [116] |
Li X,Yan F.Batch synthesis of rare-earth nickelates electronic phase transition perovskites via rare-earth processing intermediates.Rare Met2022;41:3495-503
|
| [117] |
O’donnell S,Krishnan G.Prediction and kinetic stabilization of Sn(II)-perovskite oxide nanoshells.Chem Mater2022;34:8054-64
|
| [118] |
Liu L,Wang Y,Hou Z.Li-doped (K,Na)NbO3 particles with high crystallinity and chemical stability synthesized by molten salt method.Advanced Powder Technology2024;35:104580
|
| [119] |
Börgers JM.The surprisingly high activation barrier for oxygen-vacancy migration in oxygen-excess manganite perovskites.Phys Chem Chem Phys2020;22:14329-39
|
| [120] |
Lee SA,Lee J.Epitaxial stabilization of metastable 3C BaRuO3 thin film with ferromagnetic non-fermi liquid phase.Adv Elect Mater2021;7:2001111
|
| [121] |
Song Y-H,Mao L-B.Planar defect-free pure red perovskite light-emitting diodes via metastable phase crystallization.Sci Adv2022;8:eabq2321 PMCID:PMC9651863
|
| [122] |
Ding J.Research progress on quadruple perovskite oxides.J Mater Chem C2024;12:9510-61
|
| [123] |
Hu R,Xian J.Microwave shock process for rapid synthesis of 2D porous La0.2Sr0.8CoO3 perovskite as an efficient oxygen evolution reaction catalyst.Acta Physico-Chimica Sinica2023;39:221202
|
| [124] |
Jiang H,Hu R.Microwave discharge for rapid introduction of bimetallic-synergistic configuration to conductive catecholate toward long-term supercapacitor.Chem Eng J2023;455:140804
|