Enabling highly reversible Zn anode via an interfacial preferentially adsorbed additive containing nucleophilic groups

Canglong Li , Hongli Qi , Jie Huang , Dongping Chen , Yuanzi Cheng , Minghan Xu , Zihao Jiang , Huaming Yu , Yang Huang , Guanghui Li , Yuejiao Chen

Microstructures ›› 2025, Vol. 5 ›› Issue (2) : 2025033

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (2) :2025033 DOI: 10.20517/microstructures.2024.114
Research Article

Enabling highly reversible Zn anode via an interfacial preferentially adsorbed additive containing nucleophilic groups

Author information +
History +
PDF

Abstract

The cyclability and reversibility of aqueous zinc-ion batteries (AZIBs) are severely hampered by the safety concerns arising from the Zn dendrite growth. Therefore, a stable anode with inhibited dendrites and side reactions is crucial for AZIBs. Herein, we utilized methyl acetoacetate (MA) as an additive to prevent dendrite growth and enable highly reversible Zn anodes. Benefiting from the nucleophilic groups (carbonyl groups) in MA, MA molecules can preferentially adsorb on the anode/electrolyte interface (AEI), forming a molecular protective layer. Such MA layers can not only regulate the migration and deposition of zinc ions, but also inhibit side reactions induced by the decomposition of free H2O molecules at AEI. Therefore, the symmetric cell with the addition of MA achieves a long-term cycling stability of 1,500 h at 2 mA cm-2 with a capacity of 2 mAh cm-2. In addition, the Zn//NVO full cell using MA-contained electrolyte demonstrates a high specific capacity (138.4 mAh g-1) with an outstanding capacity retention (92.8% after 600 cycles) at 1 A g-1. This work provides a principle for the use of ester-based additives with nucleophilic groups to suppress Zn dendrite growth for highly durable zinc metal anodes.

Keywords

Zn anodes / aqueous zinc-ion batteries / ester-based additive / nucleophilic groups / electrolyte optimization

Cite this article

Download citation ▾
Canglong Li, Hongli Qi, Jie Huang, Dongping Chen, Yuanzi Cheng, Minghan Xu, Zihao Jiang, Huaming Yu, Yang Huang, Guanghui Li, Yuejiao Chen. Enabling highly reversible Zn anode via an interfacial preferentially adsorbed additive containing nucleophilic groups. Microstructures, 2025, 5(2): 2025033 DOI:10.20517/microstructures.2024.114

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen F.Design and manufacture of high-performance microbatteries: lithium and beyond.Microstructures2022;2:2022012

[2]

Hu Y,Li M,Liang S.Challenges and industrial considerations towards stable and high-energy-density aqueous zinc-ion batteries.Energy Environ Sci2024;17:8078-93

[3]

Wang Y,Pang WK.Solvent control of water O-H bonds for highly reversible zinc ion batteries.Nat Commun2023;14:2720 PMCID:PMC10175258

[4]

Sun D,Yang D,Tang J.Advances in boron nitride-based materials for electrochemical energy storage and conversion.EcoEnergy2023;1:375-404

[5]

Chavhan MP,Ganguly S.Monolithic metal-based/porous carbon nanocomposites made from dissolved cellulose for use in electrochemical capacitor.Green Carbon2024;2:109-17

[6]

Huang S,He Z.Rolling strategy for highly efficient preparation of phosphating interface enabled the stable lithium anode.J Alloys Compd2024;1005:176193

[7]

Yang H,Yu H.Coordinating ionic and electronic conductivity on 3D porous host enabling deep dense lithium deposition toward high-capacity lithium metal anodes.Nanoscale2022;14:13722-30

[8]

Cheng Z,Fu J.Texture exposure of unconventional (101)Zn facet: enabling dendrite-free Zn Deposition on metallic zinc anodes.Adv Energy Mater2024;14:2304003

[9]

Ren J,Yan W,Lai C.Stable zinc anode by regulating the solvated shell and electrode–electrolyte interface with a sodium tartrate additive.Ind Chem Mater2024;2:328-39

[10]

Wei Z,Li A.Construction of in-plane 3D network electrode strategy for promoting zinc ion storage capacity.Energy Storage Mater2023;55:754-62

[11]

Bai Y,Wang J.Inhibited passivation by bioinspired cell membrane Zn interface for Zn-air batteries with extended temperature adaptability.Adv Mater2024;36:e2411404

[12]

Wang D,Dong J.Bidentate coordination enables anions-regulated solvation structure for advanced aqueous zinc metal batteries.Angew Chem Int Ed2025;64:e202414117

[13]

Zhou J,Qing P.Interfacial double-coordination effect reconstructing anode/electrolyte interface for long-term and highly reversible Zn metal anodes.J Colloid Interface Sci2025;678:772-82

[14]

Deng S,Zhao J.Advanced design for anti-freezing aqueous zinc-ion batteries.Energy Storage Mater2024;70:103490

[15]

Zhou J,Peng M.Diminishing interfacial turbulence by colloid-polymer electrolyte to stabilize zinc ion flux for deep-cycling Zn metal batteries.Adv Mater2022;34:e2200131

[16]

Huang R,Wang W.Dual-anion chemistry synchronously regulating the solvation structure and electric double layer for durable Zn metal anodes.Energy Environ Sci2024;17:3179-90

[17]

Liu W,Ning F.Fabrication of a heterovalent dual-cation pre-embedded hydrated vanadium oxide cathode for high-performance zinc ion storage.J Mater Chem A2024;12:11883-94

[18]

Ma G,Li X.Organic cations texture zinc metal anodes for deep cycling aqueous zinc batteries.Adv Mater2024;36:e2408287

[19]

Zhang M,Tang R.Stabilizing Zn/electrolyte interphasial chemistry by a sustained-release drug inspired indium-chelated resin protective layer for high-areal-capacity Zn//V2O5 batteries.Angew Chem Int Ed2024;63:e202405593

[20]

Li J,Zhou S.Intrinsically decoupled coordination chemistries enable quasi-eutectic electrolytes with fast kinetics toward enhanced zinc-ion capacitors.Angew Chem Int Ed2024;63:e202406906

[21]

Chen R,Guan C.Rational design of an in-situ polymer-inorganic hybrid solid electrolyte interphase for realising stable Zn metal anode under harsh conditions.Angew Chem Int Ed2024;63:e202401987 PMCID:PMC11497294

[22]

Shang Y,Kundu D.Decoding the zinc depletion-mediated failure in aqueous zinc batteries: on limiting parameters and accurate assessment.ACS Energy Lett2024;9:3084-92

[23]

Qu W,Chen B,Zhang M.Sulfonate-functionalization in Zn-iodine batteries as one stone kills two birds: iodine limiter and uniform Zn plating guidance layer.Sci China Mater2024;67:2889-97

[24]

Yu H,Chen D.Zwitterionic materials for aqueous Zn-based energy storage devices: current developments and perspective.Energy Rev2025;4:100107

[25]

Zha Z,Li D,Zhang W.Zwitterion as electrical double layer regulator to in-situ formation of fluorinated interphase towards stable zinc anode.Energy Storage Mater2024;64:103059

[26]

Wang L,Chen D.Steric hindrance and orientation polarization by a zwitterionic additive to stabilize zinc metal anodes.Carbon Neutral2024;3:996-1008

[27]

Li Z,Shen Z.Dissolution mechanism for dendrite-free aqueous zinc-ions batteries.Adv Energy Mater2024;14:2400572

[28]

Wei T,Wang Y.Addition of dioxane in electrolyte promotes (002)-textured zinc growth and suppressed side reactions in zinc-ion batteries.ACS Nano2023;17:3765-75

[29]

Li TC,Luo M.Interfacial molecule engineering for reversible Zn electrochemistry.ACS Energy Lett2023;8:3258-68

[30]

Liu D,Liu S.Regulating the electrolyte solvation structure enables ultralong lifespan vanadium-based cathodes with excellent low-temperature performance.Adv Funct Mater2022;32:2111714

[31]

Jiang P,Shi M,Liang X.Stabilizing zinc anodes by a uniform nucleation process with cysteine additive.Small Methods2024;8:e2300823

[32]

Liu M,Ma G.In-Situ integration of a hydrophobic and fast-Zn2+-conductive inorganic interphase to stabilize Zn metal anodes.Angew Chem Int Ed2023;62:e202304444

[33]

Zong W,Zhang C.Dynamical Janus interface design for reversible and fast-charging zinc-iodine battery under extreme operating conditions.J Am Chem Soc2024;146:21377-88

[34]

Zhang C,Chen D.Zn2+ flux regulator to modulate the interface chemistry toward highly reversible Zn anode.J Colloid Interface Sci2025;682:232-41

[35]

Zhao R,Liang P.Prioritizing hetero-metallic interfaces via thermodynamics inertia and kinetics zincophilia metrics for tough Zn-based aqueous batteries.Adv Mater2023;35:e2209288

[36]

Kong W,Lei Y.Dynamic detection of decomposition gases in eco-friendly C5F10O gas-insulated power equipment by fiber-enhanced Raman spectroscopy.Anal Chem2024;96:15313-21

[37]

Zhao Q,Ni X.Steering interfacial renovation with highly electronegative Cl modulated trinity effect for exceptional durable zinc anode.Adv Funct Mater2024;34:2404219

[38]

Cao J,Zhang D.In-situ ultrafast construction of zinc tungstate interface layer for highly reversible zinc anodes.Angew Chem Int Ed2024;63:e202319661

[39]

Peng M,Xiao K,Yuan K.Polycation-regulated electrolyte and interfacial electric fields for stable zinc metal batteries.Angew Chem Int Ed2023;62:e202302701

[40]

Bu F,Zhao W.Bio-inspired trace hydroxyl-rich electrolyte additives for high-rate and stable Zn-ion batteries at low temperatures.Angew Chem Int Ed2024;63:e202318496

[41]

Chang C,Li T.A robust gradient solid electrolyte interphase enables fast Zn dissolution and deposition dynamics.Energy Environ Sci2024;17:680-94

[42]

Chen W,Guo C.Biomass-derived polymer as a flexible “zincophilic-hydrophobic” solid electrolyte interphase layer to enable practical Zn metal anodes.J Colloid Interface Sci2024;669:104-16

[43]

Ma X,Yan C.Nitroxyl radical triggered the construction of a molecular protective layer for achieving durable Zn metal anodes.J Colloid Interface Sci2024;664:539-48

[44]

Yuan W,Wang Y.Orientational electrodeposition of highly (002)-textured zinc metal anodes enabled by iodide ions for stable aqueous zinc batteries.ACS Nano2023;17:23861-71

[45]

Zhu Q,Qiao S.Selective shielding of the (002) plane enabling vertically oriented zinc plating for dendrite-free zinc anode.Adv Mater2024;36:e2308577

[46]

Wang C,Zhang S.The impact of surface functional groups on MXene anode protective layer in aqueous zinc-ion batteries: understanding the mechanism.J Energy Storage2024;94:112360

[47]

Li Y,He Y.A Novel ultrathin multiple-kinetics-enhanced polymer electrolyte editing enabled wide-temperature fast-charging solid-state zinc metal batteries.Adv Funct Mater2024;34:2307736

[48]

Yu H,Zhang L.Electrolyte engineering for optimizing anode/electrolyte interface towards superior aqueous zinc-ion batteries: a review.Trans Nonferrous Met Soc China2024;34:3118-50

[49]

Meng C,Tan H,Liu H.A eutectic electrolyte for an ultralong-lived Zn//V2O5 cell: an in situ generated gradient solid-electrolyte interphase.Energy Environ Sci2023;16:3587-99

[50]

Li C,Chen D.Fabrication of carbon-coated V2O5-x nanoparticles by plasma-enhanced chemical vapor deposition for high-performance aqueous zinc-ion battery composite cathodes.Chin Chem Lett2025;36:110557

[51]

Yi X,Rao AM.Safe electrolyte for long-cycling alkali-ion batteries.Nat Sustain2024;7:326-37

[52]

Qiu M,Hong J,Sun P.Entropy-driven hydrated eutectic electrolytes with diverse solvation configurations for all-temperature Zn-ion batteries.Angew Chem Int Ed2024;63:e202407012

[53]

Li D,Cheng L.A MXene modulator enabled high-loading iodine composite cathode for stable and high-energy-density Zn-I2 battery.Adv Energy Mater2024;2404426

AI Summary AI Mindmap
PDF

74

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/