Solid-state nuclear magnetic resonance for garnet-type based solid lithium electrolytes

Geer Hong , Chenjie Lou , Mingxue Tang

Microstructures ›› 2025, Vol. 5 ›› Issue (4) : 2025067

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (4) :2025067 DOI: 10.20517/microstructures.2024.111
Review

Solid-state nuclear magnetic resonance for garnet-type based solid lithium electrolytes

Author information +
History +
PDF

Abstract

Solid-state batteries show high safety and theoretical energy density, receiving rapidly growing attention in both academic investigations and industrial applications. The garnet-type-based solid electrolytes (Garnet-SEs) play a vital role due to their high Li+ conductivity and electrochemical stability. The atomic structure at local environments, such as the Li+ coordination and site of doped ions, will have an important impact on the ability of transport and migration pathways that determine ion conductivity and electrochemical performances. In addition to the average structure from long-range perspective, the understanding at atomic level will be crucial for developing strategies to enhance ionic conductivity in Garnet-SEs. Solid-state NMR is a powerful tool that can probe the local atomic environments and dynamics on a molecular level. NMR is proven as a suitable technique for characterizing the light weight and small radius of Li elements, which is challenging for some conventional methods. In this review, atomic structure, ion pathways, and dynamic and microstructure formation of Garnet-SEs from the NMR view were discussed. These insights obtained from various NMR techniques will provide essential information for informing the control development and optimization of Garnet-SEs, contributing to the advancement of high-performance, safe, and reliable solid-state batteries.

Keywords

Solid electrolyte / nuclear magnetic resonance / local structure / lithium dynamic / migration pathway

Cite this article

Download citation ▾
Geer Hong, Chenjie Lou, Mingxue Tang. Solid-state nuclear magnetic resonance for garnet-type based solid lithium electrolytes. Microstructures, 2025, 5(4): 2025067 DOI:10.20517/microstructures.2024.111

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yu Y.Ion exchange properties of and rates of ionic diffusion in beta-alumina.J Inorg Nucl Chem1967;29:2453-75

[2]

Alpen UV,Talat GH.Ionic conductivity in Li3N single crystals.Appl Phys Lett1977;30:621-3

[3]

Hong H.Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors.Mater Res Bull1978;13:117-24

[4]

Alpen U,Wichelhaus W,Dudley G.Ionic conductivity of Li14Zn(GeO44 (Lisicon).Electrochimica Acta1978;23:1395-7

[5]

Aono H,Adachi G.High Li+ conducting ceramics.Acc Chem Res1994;27:265-70

[6]

Murugan R,Weppner W.Fast lithium ion conduction in garnet-type Li7La3Zr2O12.Angew Chem Int Ed Engl2007;46:7778-81

[7]

Inaguma Y,Itoh M.High ionic conductivity in lithium lanthanum titanate.Solid State Communications1993;86:689-93

[8]

Wang B,Sales B,Bates J.Synthesis, crystal structure, and ionic conductivity of a polycrystalline lithium phosphorus oxynitride with the γ-Li3PO4 structure.J Solid State Chem1995;115:313-23

[9]

Mizuno F,Tadanaga K.High lithium ion conducting glass-ceramics in the system Li2S-P2S5.Solid State Ionics2006;177:2721-5

[10]

Kato Y,Saito T.High-power all-solid-state batteries using sulfide superionic conductors.Nat Energy2016;1:16030

[11]

Kanno R.Lithium ionic conductor thio-LISICON: The Li2S-GeS2-P2S5 system.J Electrochem Soc2001;148:A742

[12]

Luo W,Zhu Y.Reducing interfacial resistance between garnet-structured solid-state electrolyte and li-metal anode by a germanium layer.Adv Mater2017;29

[13]

Wang D,Dolotko O.The synergistic effects of Al and Te on the structure and Li+-mobility of garnet-type solid electrolytes.J Mater Chem A2014;2:20271-9

[14]

Menzer G.XX. Die Kristallstruktur der Granate.Z Kristallogr Cryst Mater1929;69:300-96.

[15]

Kasper HM.Series of rare earth garnets Ln3+3M2Li+3O12 (M = Te, W).Inorg Chem1969;8:1000-2

[16]

Thangadurai V,Weppner WJF.Novel fast Lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta).J Am Ceram Soc2003;86:437-40

[17]

Thangadurai V.Li6 ALa2Ta2O12 (A = Sr, Ba): novel garnet-like oxides for fast lithium ion conduction.Adv Funct Mater2005;15:107-12

[18]

Murugan R,Schmid-beurmann P.Structure and lithium ion conductivity of bismuth containing lithium garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12.Mater Sci Eng: B2007;143:14-20

[19]

O’callaghan MP,Cussen EJ.Structure and ionic-transport properties of lithium-containing garnets Li3Ln3Te2O12 (Ln = Y, Pr, Nd, Sm-Lu).Chem Mater2006;18:4681-9

[20]

Alexander GV,Murugan R.Review on the critical issues for the realization of all-solid-state lithium metal batteries with garnet electrolyte: interfacial chemistry, dendrite growth, and critical current densities.Ionics2021;27:4105-26

[21]

Geiger CA,Lazic B.Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor.Inorg Chem2011;50:1089-97

[22]

Li Y,Wang CA.Ionic distribution and conductivity in lithium garnet Li7La3Zr2O12.J Power Sources2012;209:278-81

[23]

Jin Y.Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method.J Power Sources2011;196:8683-7

[24]

Rangasamy E,Sakamoto J.The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12.Solid State Ionics2012;206:28-32

[25]

El-shinawi H,Maclaren DA,Corr SA.Low-temperature densification of Al-doped Li7La3Zr2O12: a reliable and controllable synthesis of fast-ion conducting garnets.J Mater Chem A2017;5:319-29

[26]

Rosenkiewitz N,Bockmeyer M.Nitrogen-free sol-gel synthesis of Al-substituted cubic garnet Li7La3Zr2O12 (LLZO).J Power Sources2015;278:104-8

[27]

Qin S,Jiang Y,Hu Z.Growth of self-textured Ga3+-substituted Li7La3Zr2O12 ceramics by solid state reaction and their significant enhancement in ionic conductivity.Appl Phys Lett2018;112:113901

[28]

Wu JF,Yu Y.Gallium-Doped Li7La3Zr2O12 Garnet-type electrolytes with high lithium-ion conductivity.ACS Appl Mater Interfaces2017;9:1542-52

[29]

Dong B,Goddard P.Combined experimental and computational study of Ce-doped La3Zr2Li7O12 garnet solid-state electrolyte.Chem Mater2020;32:215-23

[30]

Rangasamy E,Allen J.The effect of 24c-site (A) cation substitution on the tetragonal-cubic phase transition in Li7-xLa3-xAxZr2O12 garnet-based ceramic electrolyte.J Power Sources2013;230:261-6

[31]

Thompson T,Allen JL.Tetragonal vs. cubic phase stability in Al - free Ta doped Li7La3Zr2O12 (LLZO).J Mater Chem A2014;2:13431-6

[32]

Zhou Y,Yang Y,Tian B.Production of Ta-doped Li7La3Zr2O12 solid electrolyte with high critical current density.ACS Appl Energy Mater2022;5:13817-28

[33]

Ohta S,Asaoka T.High lithium ionic conductivity in the garnet-type oxide Li7-xLa3(Zr2-x, Nbx)O12 (x = 0-2).J Power Sources2011;196:3342-5

[34]

Deviannapoorani C,Ramakumar S.Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets.J Power Sources2013;240:18-25

[35]

Shi J,Li L.Fluorine substitution at the O-site imparts enhanced chemical stability for garnet-structured electrolytes.ACS Energy Lett2023;8:48-55

[36]

Wang S,Wen X.Optimized lithium ion coordination via chlorine substitution to enhance ionic conductivity of garnet-based solid electrolytes.Small2024;20:e2309874

[37]

Sun F,Zhao S.Local Li+ framework regulation of a garnet-type solid-state electrolyte.ACS Energy Lett2022;7:2835-44

[38]

Miara LJ,Mo Y.Effect of Rb and Ta doping on the ionic conductivity and stability of the garnet Li7+2x-y(La3-xRbx)(Zr2-yTay)O12 (0 ≤ x ≤ 0.375, 0 ≤ y ≤ 1) superionic conductor: a first principles investigation.Chem Mater2013;25:3048-55

[39]

Ma K,Li C.Experimental and computational study of Mg and Ta-doped Li7La3Zr2O12 garnet-type solid electrolytes for all-solid-state lithium batteries.Adv Sustain Syst2024;8:2300656

[40]

Sharifi O,Soozandeh M.Improved Ga-doped Li7La3Zr2O12 garnet-type solid electrolytes for solid-state Li-ion batteries.J Solid State Electrochem2023;27:2433-44

[41]

Wang Y,Jiang K,Passerini S.Accelerating the development of LLZO in Solid-state batteries toward commercialization: a comprehensive review.Small2024;20:e2402035

[42]

Kuhn A,Lotsch BV.Single-crystal X-ray structure analysis of the superionic conductor Li10GeP2S12.Phys Chem Chem Phys2013;15:11620-2

[43]

Arbi K,Kuhn A,Sanz J.Local structure and lithium mobility in intercalated Li3AlxTi2-x(PO4)3 NASICON type materials: a combined neutron diffraction and NMR study.Phys Chem Chem Phys2014;16:18397-405

[44]

Arbi K,Jiménez R.High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2-x(PO4)3 materials (M = Ti, Ge and 0 ≤ x ≤ 0.5).J Eur Ceram Soc2015;35:1477-84

[45]

Zhou Y,Duan M.Quasi-in situ XPS insights into the surface chemistry of garnet-type Li6.4La3Zr1.4Ta0.6O12 solid-state electrolytes: the overlooked impact of pretreatments and a direct observation of the formation of LiOH.ACS Appl Mater Interfaces2023;15:45465-74

[46]

Gao X,Ikuhara YH.Cation ordering in A-site-deficient Li-ion conducting perovskites La(1-x)/3LixNbO3.J Mater Chem A2015;3:3351-9

[47]

Lou C,Sun X.Correlating local structure and migration dynamics in Na/Li dual ion conductor Na5YSi4O12.Proc Natl Acad Sci U S A2024;121:e2401109121 PMCID:PMC11331078

[48]

Sun G,Yi B.Electrochemically induced crystalline-to-amorphization transformation in sodium samarium silicate solid electrolyte for long-lasting sodium metal batteries.Nat Commun2023;14:6501 PMCID:PMC10579357

[49]

Lou C,Liu J.The glass phase in the grain boundary of Na3Zr2Si2PO12, created by gallium modulation.Chem Sci2024;15:3988-95

[50]

Shi Y,Hui K.Promoting the electrochemical properties of yolk-shell-structured CeO2 composites for lithium-ion batteries.Microstructures2021;1:2021005

[51]

Shen C.Microscopy and Microanalysis for Lithium-Ion Batteries. 1st ed. CRC Press; 2023.

[52]

Reif B,Emsley L.Solid-state NMR spectroscopy.Nat Rev Methods Primers2021;1:2 PMCID:PMC8341432

[53]

Chien P,Liu H,Hu Y.Recent advances in solid-state nuclear magnetic resonance techniques for materials research.Annu Rev Mater Res2020;50:493-520

[54]

Brown SP.Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, macromolecular, and supramolecular systems.Chem Rev2001;101:4125-56

[55]

Wüllen L, Echelmeyer T, Meyer HW, Wilmer D. The mechanism of Li-ion transport in the garnet Li5La3Nb2O12.Phys Chem Chem Phys2007;9:3298-303

[56]

Nyman M,Mcintyre SK,Ingersoll D.Alternative approach to increasing Li mobility in Li-La-Nb/Ta garnet electrolytes.Chem Mater2010;22:5401-10

[57]

Truong L.Soft-Chemistry of Garnet-Type Li5+xBaxLa3-xNb2O1 ( x = 0, 0.5, 1): Reversible H+ ↔ Li+ ion-exchange reaction and their X-ray, 7Li MAS NMR, IR, and AC impedance spectroscopy characterization.Chem Mater2011;23:3970-7

[58]

Buschmann H,Berendts S.Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”.Phys Chem Chem Phys2011;13:19378-92

[59]

Kuhn A,Robben L,Wilkening M.Li ion dynamics in Al-doped garnet-type Li7La3Zr2O12 crystallizing with cubic symmetry.Z für Phys Chem2012;226:525-37

[60]

Düvel A,Robben L,Heitjans P.Mechanosynthesis of solid electrolytes: preparation, characterization, and Li ion transport properties of garnet-type Al-doped Li7La3Zr2O12 crystallizing with cubic symmetry.J Phys Chem C2012;116:15192-202

[61]

Rettenwander D,Laskowski R.DFT study of the role of Al3+ in the fast ion-conductor Li7-3xAl3+xLa3Zr2O12 garnet.Chem Mater2014;26:2617-23 PMCID:PMC4311941

[62]

Rettenwander D,Tribus M,Amthauer G.A synthesis and crystal chemical study of the fast ion conductor Li7-3xGaxLa3Zr2O12 with x = 0.08 to 0.84.Inorg Chem2014;53:6264-9 PMCID:PMC4061145

[63]

Bernuy-lopez C,Lopez del Amo JM,Aguesse F.Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics.Chem Mater2014;26:3610-7

[64]

Rettenwander D,Schmidt W.Site Occupation of Ga and Al in Stabilized Cubic Li7-3(x+y)GaxAlyLa3Zr2O12 garnets as deduced from 27Al and 71Ga MAS NMR at ultrahigh magnetic fields.Chem Mater2015;27:3135-42

[65]

Rettenwander D,Langer J,Wilkening M.Crystal chemistry of “Li7La3Zr2O12” garnet doped with Al, Ga, and Fe: a short review on local structures as revealed by NMR and Mößbauer spectroscopy studies.Eur. J. Mineral.2016;28:619-29

[66]

Karasulu B,Groh MF,Morris AJ.Al/Ga-doped Li7La3Zr2O12 garnets as Li-ion solid-state battery electrolytes: atomistic insights into local coordination environments and their influence on 17O, 27Al, and 71Ga NMR Spectra.J Am Chem Soc2020;142:3132-48 PMCID:PMC7146863

[67]

Vema S,Nagendran S.Clarifying the dopant local structure and effect on ionic conductivity in garnet solid-state electrolytes for lithium-ion batteries.Chem Mater2023;35:9632-46 PMCID:PMC10687891

[68]

Wang D,Pang WK.Toward understanding the lithium transport mechanism in garnet-type solid electrolytes: Li+ ion exchanges and their mobility at octahedral/tetrahedral sites.Chem Mater2015;27:6650-9

[69]

Ranque P,Devaraj S,López del Amo JM.Characterization of the interfacial Li-ion exchange process in a ceramic-polymer composite by solid state NMR.J Mater Chem A2021;9:17812-20

[70]

Ghorbanzade P,Gomez K.Influence of the LLZO-PEO interface on the micro- and macro-scale properties of composite polymer electrolytes for solid-state batteries.Mater Today Energy2023;38:101448

[71]

Ghorbanzade P,Gómez K.Impact of thermal treatment on the Li-ion transport, interfacial properties, and composite preparation of LLZO garnets for solid-state electrolytes.J Mater Chem A2023;11:11675-83

[72]

Zheng J,Hu Y.Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes.Angewandte Chemie2016;128:12726-30

[73]

Hu W,Wu N.High Li+ conducting porous garnet enables fast Li+ conduction in polymer/garnet composite electrolyte.ACS Appl Energy Mater2024;7:8077-84

[74]

Lu Z,Rong Y.Enhanced electrochemical properties and optimized Li+ transmission pathways of PEO/LLZTO-based composite electrolytes modified by supramolecular combination.Energy Environ Mater2024;7:e12498

[75]

Yang T,Cheng Q,Chan CK.Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology.ACS Appl Mater Interfaces2017;9:21773-80

[76]

Zheng J,Feng X,Hu Y.Li-ion transport in a representative ceramic-polymer-plasticizer composite electrolyte: Li7La3Zr2O12-polyethylene oxide-tetraethylene glycol dimethyl ether.J Mater Chem A2017;5:18457-63

[77]

He J,Wang D,Zhong G.Interfacial barrier of ion transport in poly (ethylene oxide)-Li7La3Zr2O12 composite electrolytes illustrated by 6Li-tracer nuclear magnetic resonance spectroscopy.J Phys Chem Lett2022;13:1500-5

[78]

Wu L,Tang M.Lithium-ion transport enhancement with bridged ceramic-polymer interface.Energy Storage Mater2023;58:40-7

[79]

Zhang X,Fu C.Unveiling the structure and diffusion kinetics at the composite electrolyte interface in solid-state batteries.Adv Energy Mater2024;14:2401802

[80]

Koch B.Lithium ionic jump motion in the fast solid ion conductor Li5La3Nb2O12.Solid State Nucl Magn Reson2008;34:37-43

[81]

Narayanan S,Wilkening M.Macroscopic and microscopic Li+ transport parameters in cubic garnet-type “Li6.5La2.5Ba0.5ZrTaO12” as probed by impedance spectroscopy and NMR.RSC Adv2012;2:2553

[82]

Kuhn A,Spencer L,Thangadurai V.Li self-diffusion in garnet-type Li7La3Zr2O12 as probed directly by diffusion-induced 7Li spin-lattice relaxation NMR spectroscopy.Phys Rev B2011;83

[83]

Bottke P,Schmidt W,Wilkening M.Ion Dynamics in solid electrolytes: NMR reveals the elementary steps of Li+ hopping in the garnet Li6.5La3Zr1.75Mo0.25O12.Chem Mater2015;27:6571-82

[84]

Böhmer R,Vogel M.Solid-state Li NMR with applications to the translational dynamics in ion conductors.Prog Nucl Magn Reson Spectrosc2007;50:87-174

[85]

Kuhn A,Schmidt G,Thangadurai V.Spin-alignment echo NMR: probing Li+ hopping motion in the solid electrolyte Li7La3Zr2O12 with garnet-type tetragonal structure.J Phys Condens Matter2012;24:035901

[86]

Hayamizu K,Matsui M.Lithium ion diffusion measurements on a garnet-type solid conductor Li6.6La3Zr1.6Ta0.4O12 by using a pulsed-gradient spin-echo NMR method.Solid State Nucl Magn Reson2015;70:21-7

[87]

Hayamizu K,Haishi T.Lithium ion micrometer diffusion in a garnet-type cubic Li7La3Zr2O12 (LLZO) studied using 7Li NMR spectroscopy.J Chem Phys2017;146:024701

[88]

Hayamizu K,Haishi T.Non-uniform lithium-ion migration on micrometre scale for garnet- and NASICON-type solid electrolytes studied by 7Li PGSE-NMR diffusion spectroscopy.Phys Chem Chem Phys2018;20:17615-23

[89]

Hayamizu K,Kataoka K,Haishi T.Relationship between Li+ diffusion and ion conduction for single-crystal and powder garnet-type electrolytes studied by 7Li PGSE NMR spectroscopy.Phys Chem Chem Phys2019;21:23589-97

[90]

Hayamizu K,Kataoka K.Toward understanding the anomalous Li diffusion in inorganic solid electrolytes by studying a single-crystal garnet of LLZO-Ta by pulsed-gradient spin-echo nuclear magnetic resonance spectroscopy.J Chem Phys2019;150:194502

[91]

Kataoka K.High ionic conductor member of garnet-type oxide Li6.5La3Zr1.5Ta0.5O12.Chem Electro Chem2018;5:2551-7

[92]

Kuhn A,Sreeraj P.NMR relaxometry as a versatile tool to study Li ion dynamics in potential battery materials.Solid State Nucl Magn Reson2012;42:2-8

[93]

Castillo A,Rapaud O.Bulk Li mobility enhancement in Spark Plasma Sintered Li7 - 3xAlxLa3Zr2O12 garnet.Ceram Int2018;44:18844-50

[94]

Wagner R,Rettenwander D.Crystal structure of garnet-related Li-ion conductor Li7-3x GaxLa3Zr2O12: fast Li-ion conduction caused by a different cubic modification?.Chem Mater2016;28:1861-71

[95]

Hogrefe K,Zeier WG.Tracking ions the direct way: long-range Li+ dynamics in the thio-LISICON family Li4MCh4 (M = Sn, Ge; Ch = S, Se) as probed by 7Li NMR relaxometry and 7Li spin-alignment echo NMR.J Phys Chem C Nanomater Interfaces2021;125:2306-17

[96]

Duff BB,Gamon J,Rosseinsky MJ.Toward understanding of the Li-Ion migration pathways in the lithium aluminum sulfides Li3AlS3 and Li4.3AlS3.3Cl0.7 via 6,7Li solid-state nuclear magnetic resonance spectroscopy.Chem Mater2023;35:27-40

[97]

Ganapathy S,van Eck ERH.Peeking across grain boundaries in a solid-state ionic conductor.ACS Energy Lett2019;4:1092-7

[98]

Han F,Yue J.High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes.Nat Energy2019;4:187-96

[99]

Tian H,Ji Y,Qi Y.Interfacial electronic properties dictate Li dendrite growth in solid electrolytes.Chem Mater2019;31:7351-9

[100]

Shen F,Xiao X.Effect of pore connectivity on Li dendrite propagation within LLZO electrolytes observed with synchrotron X-ray tomography.ACS Energy Lett2018;3:1056-61

[101]

Marbella LE,Kasemchainan J,Bruce PG.7Li NMR chemical shift imaging to detect microstructural growth of lithium in all-solid-state batteries.Chem Mater2019;31:2762-9 PMCID:PMC7006347

[102]

Chandrashekar S,Chang HJ,Grey CP.7Li MRI of Li batteries reveals location of microstructural lithium.Nat Mater2012;11:311-5

[103]

Chang W,Wang M.Evolving contact mechanics and microstructure formation dynamics of the lithium metal-Li7La3Zr2O12 interface.Nat Commun2021;12:6369 PMCID:PMC8569160

[104]

Pecher O,Griffith KJ.Materials’ methods: NMR in battery research.Chem Mater2017;29:213-42

[105]

Tang M,Melin P.Following lithiation fronts in paramagnetic electrodes with in situ magnetic resonance spectroscopic imaging.Nat Commun2016;7:13284 PMCID:PMC5097146

[106]

Nishiyama Y,Agarwal V,Ramamoorthy A.Ultrafast magic angle spinning solid-state NMR spectroscopy: advances in methodology and applications.Chem Rev2023;123:918-88 PMCID:PMC10319395

[107]

Steinberg Y,Moroz IB.Composition and structure of the solid electrolyte interphase on Na-ion anodes revealed by exo- and endogenous dynamic nuclear polarization - NMR spectroscopy.J Am Chem Soc2024;146:24476-92 PMCID:PMC11378293

[108]

Maity A,Buganim Y,Leskes M.Tracking dendrites and solid electrolyte interphase formation with dynamic nuclear polarization-NMR spectroscopy.Nat Commun2024;15:9956 PMCID:PMC11570622

[109]

Hogrefe K,Minafra N,Wilkening HMR.NMR down to cryogenic temperatures: accessing the rate-limiting step of Li transport in argyrodite electrolytes.Chem Mater2024;36:6527-34

[110]

Chien PH,Tang M.Li Distribution heterogeneity in solid electrolyte Li10GeP2S12 upon electrochemical cycling probed by 7Li MRI.J Phys Chem Lett2018;9:1990-8

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/