The application of phase-field method in magnetoelastic functional materials

Ting-Tao Cai , Yu-Xin Xu , Zhao Zhang , Shuai Zhang , Hai-Hua Huang , Cheng-Chao Hu

Microstructures ›› 2025, Vol. 5 ›› Issue (3) : 2025059

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (3) :2025059 DOI: 10.20517/microstructures.2024.106
Review

The application of phase-field method in magnetoelastic functional materials

Author information +
History +
PDF

Abstract

The phase-field method has become a powerful tool in materials science and engineering, providing a strong framework to understand phase transitions and microstructure evolution. By connecting atomic-scale phenomena to macroscopic behavior via mesoscale modeling, it has greatly enhanced our understanding of material processes. This paper presents micromagnetic microelastic phase-field modeling and explores recent applications of this approach in studying microstructural evolution and ultrasensitive magnetoelastic responses at phase boundaries in magnetoelastic functional materials, including magnetostrictive compounds and ferromagnetic shape memory alloys. The paper also discusses significant advances in phase-field modeling of magnetoelastic-electric coupling in multiferroic systems and magnetoelectric heterostructures. Finally, we identify key challenges and future directions for the phase-field method to advance the development of magnetoelastic functional materials.

Keywords

Phase-field method / magnetoelastic materials / domain structure / morphotropic phase boundary (MPB)

Cite this article

Download citation ▾
Ting-Tao Cai, Yu-Xin Xu, Zhao Zhang, Shuai Zhang, Hai-Hua Huang, Cheng-Chao Hu. The application of phase-field method in magnetoelastic functional materials. Microstructures, 2025, 5(3): 2025059 DOI:10.20517/microstructures.2024.106

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Janssens KGF,Kozeschnik E,Nestler B. Computational materials engineering: an introduction to microstructure evolution. Burlington: Elsevier Academic Press; 2007. Available from: https://www.sciencedirect.com/book/9780123694683/computational-materials-engineering [Last accessed on 25 Apr 2025]

[2]

Bulatov VV.Computer simulations of dislocations. New York: Oxford University Press; 2006, pp. 241.

[3]

Ginzburg VL.73 - On the theory of superconductivity. In: Collected Papers of L.D. Landau; 1965, pp. 546-68.

[4]

Cahn JW.Free energy of a nonuniform system. I. interfacial free energy.J Chem Phys1958;28:258-67

[5]

Collins JB.Diffuse interface model of diffusion-limited crystal growth.Phys Rev B Condens Matter1985;31:6119-22

[6]

Emmerich H.The diffuse interface approach in materials science: thermodynamic concepts and applications of phase-field models. New York: Springer; 2003.

[7]

Chen L.Phase-field method of materials microstructures and properties.MRS Bull2024;49:551-5

[8]

Zhao Y.Understanding and design of metallic alloys guided by phase-field simulations.NPJ Comput Mater2023;9:1038

[9]

Zhuang X,Huynh G,Rabczuk T.Phase field modeling and computer implementation: a review.Eng Fract Mech2022;262:108234

[10]

Tourret D,Llorca J.Phase-field modeling of microstructure evolution: recent applications, perspectives and challenges.Prog Mater Sci2022;123:100810

[11]

Tonks MR.The phase field method: mesoscale simulation aiding material discovery.Annu Rev Mater Res2019;49:79-102

[12]

Emmerich H.Advances of and by phase-field modelling in condensed-matter physics.Adv Phys2008;57:1-87

[13]

Boettinger WJ,Beckermann C.Phase-field simulation of solidification.Annu Rev Mater Res2002;32:163-94

[14]

Chen L.Phase-field models for microstructure evolution.Annu Rev Mater Res2002;32:113-40

[15]

Provatas N.Phase-field methods in materials science and engineering. Wiley; 2010.

[16]

Wang F,Matz AM.Phase-field study on the growth of magnesium silicide occasioned by reactive diffusion on the surface of Si-foams.Acta Mater2019;170:138-54

[17]

Uddagiri M,Steinbach I.Interface stabilization and propagation in phase field models of solidification: resolving the issue of large driving forces.Model Simul Mater Sci Eng2024;32:065034

[18]

Cai Y,Czerny A,Nestler B.Phase-field investigation on the microstructural evolution of eutectic transformation and four-phase reaction in Mo-Si-Ti system.Acta Mater2023;258:119178

[19]

Chen LQ.Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: the grain-growth kinetics.Phys Rev B Condens Matter1994;50:15752-6

[20]

Kobayashi R,Craig Carter W.A continuum model of grain boundaries.Phys D2000;140:141-50

[21]

Iii C, Chen L. Computer simulation of 3-D grain growth using a phase-field model.Acta Mater2002;50:3059-75

[22]

Moelans N,Wollants P.Quantitative analysis of grain boundary properties in a generalized phase field model for grain growth in anisotropic systems.Phys Rev B2008;78:024113

[23]

Gránásy L,Warren JA.Phase-field modeling of crystal nucleation in undercooled liquids - A review.Prog Mater Sci2019;106:100569

[24]

Wang Y,Khachaturyan A.Kinetics of strain-induced morphological transformation in cubic alloys with a miscibility gap.Acta Metall Mater1993;41:279-96

[25]

Zhu J,Ardell A,Liu Z.Three-dimensional phase-field simulations of coarsening kinetics of γ′ particles in binary Ni-Al alloys.Acta Mater2004;52:2837-45

[26]

Liu H,Liu J,Wang Y.A simulation study of the shape of β′ precipitates in Mg-Y and Mg-Gd alloys.Acta Mater2013;61:453-66

[27]

Zhao Y,Zhang H.Dislocation motion in plastic deformation of nano polycrystalline metal materials: a phase field crystal method study.Adv Compos Hybrid Mater2022;5:2546-56

[28]

Tian XL,Peng DW,Guo Z.Phase-field crystal simulation of evolution of liquid pools in grain boundary pre-melting regions.Trans Nonfer Metal Soc China2021;31:1175-88

[29]

Clayton J.Phase-field analysis of fracture-induced twinning in single crystals.Acta Mater2013;61:5341-53

[30]

Ansari TQ,Hu S,Luo J.Phase-field model of pitting corrosion kinetics in metallic materials.NPJ Comput Mater2018;4:89

[31]

Kovacevic S,Martínez-Pañeda E.Phase-field modeling of pitting and mechanically-assisted corrosion of Mg alloys for biomedical applications.Acta Biomater2023;164:641-58

[32]

Wang Q,Li Y,Wang D.Application of phase-field method in rechargeable batteries.NPJ Comput Mater2020;6:445

[33]

Wang Y.Multi-scale phase field approach to martensitic transformations.Mater Sci Eng A2006;438-40:55-63

[34]

Wang Y.Three-dimensional field model and computer modeling of martensitic transformations.Acta Mater1997;45:759-73

[35]

Levitas VI,Lee DW.Three-dimensional Landau theory for multivariant stress-induced martensitic phase transformations. III. Alternative potentials, critical nuclei, kink solutions, and dislocation theory.Phys Rev B2003;68:134201

[36]

Mamivand M,El Kadiri H.A review on phase field modeling of martensitic phase transformation.Comput Mater Sci2013;77:304-11

[37]

Wang J,Chen L.Understanding, predicting, and designing ferroelectric domain structures and switching guided by the phase-field method.Annu Rev Mater Res2019;49:127-52

[38]

Guo C.Design of super-elastic freestanding ferroelectric thin films guided by phase-field simulations.Microstructures2022;2:2022021

[39]

Wang J.A real-space phase field model for the domain evolution of ferromagnetic materials.Int J Solids Struct2013;50:3597-609

[40]

Huang YY.Phase field modeling of magnetization processes in growth twinned Terfenol-D crystals.Appl Phys Lett2008;93:142504

[41]

Shen ZH,Jiang JY.Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics.Nat Commun2019;10:1843 PMCID:PMC6478924

[42]

Bui TQ.A review of phase-field models, fundamentals and their applications to composite laminates.Eng Fract Mech2021;248:107705

[43]

Chen L.From classical thermodynamics to phase-field method.Prog Mater Sci2022;124:100868

[44]

Wang J,Liu C.Phase field simulations of microstructure evolution.Chin J Solid Mechan2016;37:1-33

[45]

Cahn JW.Free energy of a nonuniform system. II. Thermodynamic basis.J Chem Phys1959;30:1121-4

[46]

Cahn JW.Free energy of a nonuniform system. III. nucleation in a two-component incompressible fluid.J Chem Phys1959;31:688-99

[47]

Cahn JW.A microscopic theory for domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics.J Phys Colloques1977;38:C7-51

[48]

Allen SM.A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening.Acta Metall1979;27:1085-95

[49]

Clark AE.Modern magnetostrictive materials: classical and nonclassical alloys.Proc SPIE2002;4699:421

[50]

Deng Z.Review of magnetostrictive vibration energy harvesters.Smart Mater Struct2017;26:103001

[51]

Jiles D.Recent advances and future directions in magnetic materials.Acta Mater2003;51:5907-39

[52]

Olabi A.Design and application of magnetostrictive materials.Mater Des2008;29:469-83

[53]

Klinger T,Schonhuber P,Bachl N.Magnetostrictive amorphous sensor for biomedical monitoring.IEEE Trans Magn1992;28:2400-2

[54]

Hart S,Dapino M.Magnetostrictive actuation of a bone loading composite for accelerated tissue formation.Smart Mater Res2012;2012:1-7

[55]

Clark AE.Chapter 7 Magnetostrictive rare earth-Fe2 compounds. Amsterdam: North-Holland Publishing Co.; 1980, pp. 531-89.

[56]

Zhang JX.Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials.Acta Mater2005;53:2845-55

[57]

Hubert A.Magnetic domains: the analysis of magnetic microstructures. Berlin: Springe; 1998.

[58]

Kittel C.Physical theory of ferromagnetic domains.Rev Mod Phys1949;21:541-83

[59]

Hu CC,Shi DN,Fan JY.Anisotropy compensation and magnetostrictive properties in TbxDy1-x(Fe0.9Mn0.1)1.93 laves compounds: experimental and theoretical analysis.J App Phys2013;113:203906

[60]

O’Handley RC. Modern magnetic materials: principles and applications. New York: Wiley; 1999. Available from: https://www.wiley.com/en-us/Modern+Magnetic+Materials%3A+Principles+and+Applications-p-9780471155669 [Last accessed on 25 Apr 2025]

[61]

Khachaturyan AG. Theory of structural transformation in solids. New York: Wiley; 2013. Available from: https://store.doverpublications.com/products/9780486783444?srsltid=AfmBOoqp5K0c7IvoyBkllCIrPmbaCngBtMhhWcV_MvzTq79RDwfwl65Y [Last accessed on 25 Apr 2025]

[62]

Artemev A,Khachaturyan A.Three-dimensional phase field model of proper martensitic transformation.Acta Mater2001;49:1165-77

[63]

Wang X,E W.A gauss-seidel projection method for micromagnetics simulations.J Comput Phys2001;171:357-72

[64]

Chen L.Applications of semi-implicit Fourier-spectral method to phase field equations.Comput Phys Commun1998;108:147-58

[65]

Hu C,Yang T.Phase field simulation of grain size effects on the phase coexistence and magnetostrictive behavior near the ferromagnetic morphotropic phase boundary.Appl Phys Lett2019;115:162402

[66]

Liu J,Xu H.Giant magnetostrictive materials.Sci China Technol Sci2012;55:1319-26

[67]

Ren W.Progress in bulk MgCu2-type rare-earth iron magnetostrictive compounds.Chin Phys B2013;22:077507

[68]

Atulasimha J.A review of magnetostrictive iron-gallium alloys.Smart Mater Struct2011;20:043001

[69]

Gou J,Qiao R,Liu F.Dynamic precipitation and the resultant magnetostriction enhancement in [001]-oriented Fe-Ga alloys.Acta Mater2021;206:116631

[70]

Newnham RE.Phase transformations in smart materials.Acta Cryst A1998;54:729-37

[71]

Yang S,Zhou C.Large magnetostriction from morphotropic phase boundary in ferromagnets.Phys Rev Lett2010;104:197201

[72]

Bergstrom R Jr,Cullen J.Morphotropic phase boundaries in ferromagnets: Tb1-xDyxFe2 alloys.Phys Rev Lett2013;111:017203

[73]

Hunter D,Wang K.Giant magnetostriction in annealed Co1-xFex thin-films.Nat Commun2011;2:518

[74]

Wang BL.Magnetization and magnetostriction of Terfenol-D near spin reorientation boundary.J Appl Phys2012;111:103908

[75]

Zhou C,Bao H.Inverse effect of morphotropic phase boundary on the magnetostriction of ferromagnetic Tb1-xGdxCo2.Phys Rev B2014;89:100101

[76]

Zhang D,Yang S.Role of the electronic structure in the morphotropic phase boundary of Tb1-xDyxCo2 studied by first-principle calculation.J Alloys Compd2016;689:1083-7

[77]

Ma T,Gou J.Sign-changed-magnetostriction effect of morphotropic phase boundary in pseudobinary DyCo2-DyFe2 laves compounds.Phys Rev Mater2019;3:034411

[78]

Hu C,Cheng X,Shi Y.Ultrasensitive magnetostrictive responses at the pre-transitional rhombohedral side of ferromagnetic morphotropic phase boundary.J Mater Sci2021;56:1713-29

[79]

Wang B,Li Y,Piercy A.Magnetostriction and magnetization process of Tb0.27Dy0.73Fe2 single crystal.J Magn Magn Mater2000;218:198-202

[80]

Zhao Y,Zhang H.Magnetostriction of <110> oriented crystals in the TbDyFe alloy.J Alloys Compd2003;354:263-8

[81]

Jiles D.Theoretical modelling of the effects of anisotropy and stress on the magnetization and magnetostriction of Tb0.3Dy0.7Fe2.J Magn Magn Mater1994;134:143-60

[82]

Desimone A.A theory of magnetostriction oriented towards applications.J Appl Phys1997;81:5706-8

[83]

Zhao XG.Effect of demagnetization fields on the magnetization processes in Terfenol-D.J Magn Magn Mater1999;195:699-707

[84]

Armstrong WD.An incremental theory of magneto-elastic hysteresis in pseudo-cubic ferro-magnetostrictive alloys.J Magn Magn Mater2003;263:208-18

[85]

Xu ,Cai TT.Magnetic-field driven domain wall evolution in rhombohedral magnetostrictive single crystals: a phase-field simulation.Microstructures2024;4:2024052

[86]

Xu Y,Hu C.Domain engineering in ferromagnetic morphotropic phase boundary with enhanced and non-hysteretic magnetostriction: a phase-field simulation.Scripta Mater2024;242:115916

[87]

Hu C,Huang H.Phase-field simulation of domain structures and magnetostrictive response in Tb1-xDyxFe2 alloys near morphotropic phase boundary.Appl Phys Lett2016;108:141908

[88]

Ma T,Pan X.Local rhombohedral symmetry in Tb0.3Dy0.7Fe2 near the morphotropic phase boundary.Appl Phys Lett2014;105:192407

[89]

Hu C,Cai T.Room-temperature ultrasensitive magnetoelastic responses near the magnetic-ordering tricritical region.J Appl Phys2021;130:063901

[90]

Ke X,Tian B.Direct evidence of magnetization rotation at the ferromagnetic morphotropic phase boundary in Tb1-xDyxFe2 system.Phys Rev B2023;108:224419

[91]

Dai M,Liang Y.Graph neural networks for an accurate and interpretable prediction of the properties of polycrystalline materials.NPJ Comput Mater2021;7:574

[92]

Sun S,Ni Y.A micromagnetic-mechanically coupled phase-field model for fracture and fatigue of magnetostrictive alloys.J Mech Phys Solids2024;191:105767

[93]

Rezaei Y,Jamshidian M.Phase-field modeling of magnetic field-induced grain growth in polycrystalline metals.Comput Mater Sci2021;200:110786

[94]

Guruswamy S,Clark A,Wun-Fogle M.Strong, ductile, and low-field-magnetostrictive alloys based on Fe-Ga.Scr Mater2000;43:239-44

[95]

Petculescu G,Mcqueeney R.Chapter three - Magnetoelasticity of bcc Fe-Ga Alloys. Elsevier; 2012, pp. 123-226.

[96]

Li X,Yu X.Magnetostriction enhancement of Fe73Ga27 alloy by magnetic field annealing.Scr Mater2018;147:64-8

[97]

Gou J,Liu X.Large and sensitive magnetostriction in ferromagnetic composites with nanodispersive precipitates.NPG Asia Mater2021;13:276

[98]

Yi M.A constraint-free phase field model for ferromagnetic domain evolution.Proc R Soc A2014;470:20140517. PMCID:PMC4197461

[99]

He Y,Jiang C.Interaction of trace rare-earth dopants and nanoheterogeneities induces giant magnetostriction in Fe-Ga alloys.Adv Funct Mater2018;28:1800858

[100]

Yan K,Niu J.Unraveling the origin of local chemical ordering in Fe-based solid-solutions.Acta Mater2024;264:119583

[101]

Zhang JX.Phase-field model for ferromagnetic shape-memory alloys.Philos Mag Lett2005;85:533-41

[102]

Ullakko K,Kantner C,Kokorin VV.Large magnetic-field-induced strains in Ni2MnGa single crystals.Appl Phys Lett1996;69:1966-8

[103]

Sozinov A,Lanska N.Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase.Appl Phys Lett2002;80:1746-8

[104]

Lai YW,Hinz D.Absence of magnetic domain wall motion during magnetic field induced twin boundary motion in bulk magnetic shape memory alloys.Appl Phys Lett2007;90:192504

[105]

Chen H,Nie Z.Unprecedented non-hysteretic superelasticity of [001]-oriented NiCoFeGa single crystals.Nat Mater2020;19:712-8

[106]

Jin YM.Effects of twin boundary mobility on domain microstructure evolution in magnetic shape memory alloys: Phase field simulation.Appl Phys Lett2009;94:062508

[107]

Jin YM.Domain microstructure evolution in magnetic shape memory alloys: phase-field model and simulation.Acta Mater2009;57:2488-95

[108]

Wu P,Zhang J.Phase-field simulations of magnetic field-induced strain in Ni2MnGa ferromagnetic shape memory alloy.Philos Mag2011;91:2102-16

[109]

Peng Q,Chen M.Phase-field simulation of magnetic hysteresis and mechanically induced remanent magnetization rotation in Ni-Mn-Ga ferromagnetic shape memory alloy.Scr Mater2017;127:49-53

[110]

Peng Q,Moumni Z.A phase-field model on the hysteretic magneto-mechanical behaviors of ferromagnetic shape memory alloy.Acta Mater2015;88:13-24

[111]

Sun Y,Zhu J.Phase field study of the microstructure evolution and thermomechanical properties of polycrystalline shape memory alloys: grain size effect and rate effect.Comput Mater Sci2018;145:252-62

[112]

Wu HH,Ke YB.Real-space phase field investigation of evolving magnetic domains and twin structures in a ferromagnetic shape memory alloy.J Appl Phys2016;120:183904

[113]

Xu C,Liang Y.Phase field simulations of microstructures in porous ferromagnetic shape memory alloy Ni2MnGa.Metals2023;13:1572

[114]

Xu Y,Liu L.A nano-embryonic mechanism for superelasticity, elastic softening, invar and elinvar effects in defected pre-transitional materials.Acta Mater2019;171:240-52

[115]

Rao W,Hu C.Magnetoelastic equilibrium and super-magnetostriction in highly defected pre-transitional materials.Acta Mater2020;188:539-50

[116]

Nan CW.Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases.Phys Rev B Condens Matter1994;50:6082-8

[117]

Srinivas S.The effective magnetoelectric coefficients of polycrystalline multiferroic composites.Acta Mater2005;53:4135-42

[118]

Ramesh R.Multiferroics: progress and prospects in thin films.Nat Mater2007;6:21-9

[119]

Ni Y.Phase field approach for strain-induced magnetoelectric effect in multiferroic composites.J Appl Phys2007;102:113506

[120]

Zhang JX,Schlom DG.Phase-field model for epitaxial ferroelectric and magnetic nanocomposite thin films.Appl Phys Lett2007;90:052909

[121]

Wu P,Zhang J.Phase-field model of multiferroic composites: Domain structures of ferroelectric particles embedded in a ferromagnetic matrix.Philos Mag2010;90:125-40

[122]

Hu J,Zhang JX,Chen LQ.Phase-field simulation of strain-induced domain switching in magnetic thin films.Appl Phys Lett2011;98:112505

[123]

Yang TN,Nan CW.On the elastically coupled magnetic and ferroelectric domains: a phase-field model.Appl Phys Lett2014;104:202402

AI Summary AI Mindmap
PDF

59

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/