High-throughput screening of superlattice-like Ge-Sb-M (M = Sn, Se) thin films for multi-level phase change photonics materials

Hongjian Yuan , Junyuan Lu , Genmao Zhuang , Hong Wang , Jian Hui

Microstructures ›› 2025, Vol. 5 ›› Issue (3) : 2025053

PDF
Microstructures ›› 2025, Vol. 5 ›› Issue (3) :2025053 DOI: 10.20517/microstructures.2024.100
Research Article

High-throughput screening of superlattice-like Ge-Sb-M (M = Sn, Se) thin films for multi-level phase change photonics materials

Author information +
History +
PDF

Abstract

Ge-Sb-Sn/Se with a superlattice-like structure (SLL) is a promising material candidate for multi-level phase change photonics memory technology. However, its multi-stage phase transition process has not been elucidated so far due to the limitations of traditional research approaches. The most critical issue is to efficiently construct its composition-process-structure-property multi-parameter coupled constitutive relationship. In this work, we develop a high-throughput approach to systematically study the multi-level phase transition mechanisms of Ge-Sb-Sn/Se SLL combinatorial thin films. For the Ge-Sb-Sn system, phase evolution is observed from trigonal to hexagonal/tetrahedral structures. In contrast, the Ge-Sb-Se system behaves differently. We further examine the optical properties of the Ge-Sb-Sn/Se SLL combinatorial thin films. The results identify the GeSbSn3 SLL thin film as a standout from the Ge-Sb-Sn ternary system under Sb→Sn→Ge deposition sequence, with a figure of merit (FOM) greater than 0.4 and high thermal stability. The present study serves as a foundation for further exploration of the Ge-Sb-based quaternary system and accelerates the application of advanced phase change materials (PCMs) in the big data era.

Keywords

Ge-Sb-Se/Sn / superlattice-like thin film / high-throughput / multi-level phase transition / optical properties

Cite this article

Download citation ▾
Hongjian Yuan, Junyuan Lu, Genmao Zhuang, Hong Wang, Jian Hui. High-throughput screening of superlattice-like Ge-Sb-M (M = Sn, Se) thin films for multi-level phase change photonics materials. Microstructures, 2025, 5(3): 2025053 DOI:10.20517/microstructures.2024.100

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ríos C,Hosseini P.Integrated all-photonic non-volatile multi-level memory.Nat Photon2015;9:725-32

[2]

Feldmann J,Gruhler N.Calculating with light using a chip-scale all-optical abacus.Nat Commun2017;8:1256 PMCID:PMC5665880

[3]

Liu B,Liu W.Multi-level phase-change memory with ultralow power consumption and resistance drift.Sci Bull2021;66:2217-24

[4]

Wen S,Jiang M.Multi-level coding-recoding by ultrafast phase transition on Ge2Sb2Te5 thin films.Sci Rep2018;8:4979 PMCID:PMC5862832

[5]

Kim ET,Kim YT.Investigation of the structural transformation behavior of Ge2Sb2Te5 thin films using high resolution electron microscopy.Appl Phys Lett2007;91:101909

[6]

Wuttig M,Taubner T.Phase-change materials for non-volatile photonic applications.Nat Photon2017;11:465-76

[7]

Yue L,Zheng S.Cu/Sb codoping for tuning carrier concentration and thermoelectric performance of GeTe-based alloys with ultralow lattice thermal conductivity.ACS Appl Energy Mater2019;2:2596-603

[8]

Wei SJ,Chen K.Phase change behavior in titanium-doped Ge2Sb2Te5 films.Appl Phys Lett2011;98:231910

[9]

Yin Q.Enhanced optical properties of Sn-doped Ge2Sb2Te5 thin film with structural evolution.J Alloys Compd2019;770:692-700

[10]

Vinod EM,Sangunni KS.Structural transition and enhanced phase transition properties of Se doped Ge2Sb2Te5 alloys.Sci Rep2015;5:8050 PMCID:PMC4311258

[11]

Agati M,Benoit D.In-situ transmission electron microscopy studies of the crystallization of N-doped Ge-rich GeSbTe materials.MRS Commun2018;8:1145-52

[12]

Bourgeois G,Al Mamun F.Carbon ion implantation as healing strategy for improved reliability in phase-change memory arrays.Microelectron Reliab2021;126:114221

[13]

Shen J,Chen X.Thermal barrier phase change memory.ACS Appl Mater Interfaces2019;11:5336-43

[14]

Chong TC,Zhao R.Phase change random access memory cell with superlattice-like structure.Appl Phys Lett2006;88:122114

[15]

Lee ML,Gan CL,Muhamad Daud SB.Crystallization and thermal stability of Sn-doped Ge2Sb2Te5 phase change material.J Phys D Appl Phys2008;41:215402

[16]

Lazarenko P,An P.Low power reconfigurable multilevel nanophotonic devices based on Sn-doped Ge2Sb2Te5 thin films.Acta Mater2022;234:117994

[17]

Xu P,Doylend JK.Low-loss and broadband nonvolatile phase-change directional coupler switches.ACS Photonics2019;6:553-7

[18]

Zhang H,Lu L,Rahman BMA.Comparison of the phase change process in a GST-loaded silicon waveguide and MMI.Opt Express2021;29:3503-14

[19]

Fang Z,Saxena A,Chen Y.Non-volatile reconfigurable integrated photonics enabled by broadband low-loss phase change material.Adv Opt Mater2021;9:2002049

[20]

Halenkovič T,Gutwirth J,Nazabal V.Amorphous Ge-Sb-Se-Te chalcogenide films fabrication for potential environmental sensing and nonlinear photonics.J Materiomics2022;8:1009-19

[21]

Zhang Y,Li J.Broadband transparent optical phase change materials for high-performance nonvolatile photonics.Nat Commun2019;10:4279 PMCID:PMC6768866

[22]

Hu Y,Li S.Superlattice-like Sb50Se50/Ga30Sb70 thin films for high-speed and high density phase change memory application.Appl Phys Lett2013;103:152107

[23]

Hui J,Luo Y.Phase evolution and amorphous stability upon solid-state reaction in superlattice-like Ge-Sb-Te combinatorial thin films.ACS Appl Electron Mater2020;2:3880-8

[24]

Agati M,Benoit D.Effects of surface oxidation on the crystallization characteristics of Ge-rich Ge-Sb-Te alloys thin films.Appl Surf Sci2020;518:146227

[25]

Xu J,Chen L,Xie Q.The microstructural changes of Ge2Sb2Te5 thin film during crystallization process.AIP Adv2018;8:055006

[26]

Teng N,Chen Y,Shen X.Optical properties and thermal stability of amorphous Ge-Sb-Se films.J Non Cryst Solids2020;532:119888

[27]

Hui J,Yuan H.High-throughput study of amorphous stability and optical properties of superlattice-like Ge-Sb-Te thin films.Small2024;20:e2307792

[28]

Hui J,Zhang H.High-throughput investigation of structural evolution upon solid-state in Cu-Cr-Co combinatorial multilayer thin-film.Mater Des2022;215:110455

[29]

Donald E.Pybaselines: a python library of algorithms for the baseline correction of experimental data. Zenodo 2022

[30]

Virtanen P,Oliphant TE.SciPy 1.0: fundamental algorithms for scientific computing in Python.Nat Methods2020;17:261-72

[31]

Murtagh F. Methods of hierarchical clustering; 2011. Available from: https://arxiv.org/abs/1105.0121 [Last accessed on 11 Mar 2025].

[32]

Weber JW,van de Sanden MCM.B-spline parametrization of the dielectric function applied to spectroscopic ellipsometry on amorphous carbon.J Appl Phys2009;106:123503

[33]

Yamada N.Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory.J App Phys2000;88:7020-8

[34]

Kyono A,Horiki M.Selenium substitution effect on crystal structure of stibnite (Sb2S3).Phys Chem Minerals2015;42:475-90

[35]

Akhtar D,Goel T.Metastable structures of splat-cooled and vapour-depodited lead and antimony films.Thin Solid Films1979;58:327-32

[36]

Salamat A,Bouvier P.High-pressure structural transformations of Sn up to 138 GPa: angle-dispersive synchrotron x-ray diffraction study.Phys Rev B2013;88:104104

[37]

Wu S,Zhang L.Effects of high-temperature thermal annealing on GeSn thin-film material and photodetector operating at 2 µm.J Alloys Compd2021;872:159696

[38]

Eising G,Pauza A.Competing crystal growth in Ge-Sb phase-change films.Adv Funct Mater2014;24:1687-94

[39]

Janicki TD,Liu R,Schmidt JR.Guiding epitaxial crystallization of amorphous solids at the nanoscale: interfaces, stress, and precrystalline order.J Chem Phys2022;157:100901

[40]

Jin B,Wang Y,Liu Z.Anisotropic epitaxial behavior in the amorphous phase-mediated hydroxyapatite crystallization process: a new understanding of orientation control.J Phys Chem Lett2019;10:7611-6

[41]

Ríos C,Zhang Y.Ultra-compact nonvolatile phase shifter based on electrically reprogrammable transparent phase change materials.PhotoniX2022;3:70

[42]

Yurchenko AV,Alkina AD,Kovtun AA.Research of the additional losses occurring in optical fiber at its multiple bends in the range waves 1310 nm, 1550 nm and 1625 nm long.J Phys Conf Ser2016;671:012001

[43]

Sun XY,Goto T.Single-step deposition of cerium-substituted yttrium iron garnet for monolithic on-chip optical isolation.ACS Photonics2015;2:856-63

[44]

Ghosh G.The sb-se (antimony-selenium) system.J Phase Equilibria1993;14:753-63

AI Summary AI Mindmap
PDF

46

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/