PDF
Abstract
Halide perovskites (HPs) have found wide-ranging applications in photovoltaic and optoelectronic devices, achieving remarkable success due to their unique crystal structure and properties. Given the sensitivity of perovskite materials to external stimuli, it is crucial to understand the intrinsic changes in structure and chemical composition during operational conditions. This understanding could assist researchers in exploring new strategies to enhance the photoelectrical properties and stability of these materials. While many in situ methods, such as in situ X-ray diffraction and in situ photoluminescence, have been employed to investigate the properties of perovskite materials in real-time, in situ transmission electron microscopy (TEM) stands out as an unparalleled technique for observing subtle changes at the micro and even atomic scale. In this review, we summarize recent advancements in studying HPs using in situ TEM. We first introduce studies on the crystallization process of HP crystals through in situ TEM observation, and then categorize research works on the degradation process of HPs driven by different external stimuli, including electron beam, heat, electrical bias, light, and ambient atmosphere. Finally, we highlight several challenges that still need to be addressed in the future. This review aims to present a thorough summary of the existing research and lay the groundwork for future inquiries in this captivating area.
Keywords
Halide perovskites
/
in situ transmission electron microscopy
/
crystallization
/
degradation
Cite this article
Download citation ▾
Lianzheng Hao, Songhua Cai.
Progress in in situ TEM investigations of halide perovskites.
Microstructures, 2025, 5(1): 2025012 DOI:10.20517/microstructures.2024.10
| [1] |
Dong H,Gao W,Xia Y.Metal halide perovskite for next-generation optoelectronics: progresses and prospects.eLight2023;3:3
|
| [2] |
Zhao Y.Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications.Chem Soc Rev2016;45:655-89
|
| [3] |
Huang J,Shao Y.Understanding the physical properties of hybrid perovskites for photovoltaic applications.Nat Rev Mater2017;2:1-19
|
| [4] |
Jiang Q,Zhang X.Surface passivation of perovskite film for efficient solar cells.Nat Photonics2019;13:460-6
|
| [5] |
Lin Y,Sun B.Nanocrystalline perovskite hybrid photodetectors with high performance in almost every figure of merit.Adv Funct Mater2018;28:1705589
|
| [6] |
Chen P,Shi Z,Li N.Pb-based halide perovskites: recent advances in photo(electro)catalytic applications and looking beyond.Adv Funct Mater2020;30:1909667
|
| [7] |
Ran J,Wang X,Geohegan DB.Electron-beam-related studies of halide perovskites: challenges and opportunities.Adv Energy Mater2020;10:1903191
|
| [8] |
Liu D,Que M.Metal halide perovskite nanocrystals: application in high-performance photodetectors.Mater Adv2021;2:856-79
|
| [9] |
Yuan M,Comin R.Perovskite energy funnels for efficient light-emitting diodes.Nat Nanotechnol2016;11:872-7
|
| [10] |
Zhao Y,Qu Z.Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells.Science2022;377:531-4
|
| [11] |
Dou L,You J.Solution-processed hybrid perovskite photodetectors with high detectivity.Nat Commun2014;5:5404
|
| [12] |
Wang H.Perovskite-based photodetectors: materials and devices.Chem Soc Rev2017;46:5204-36
|
| [13] |
Li Z,Zhang X,Fang X.Perovskite-type 2D materials for high-performance photodetectors.J Phys Chem Lett2022;13:1215-25
|
| [14] |
Kojima A,Shirai Y.Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.J Am Chem Soc2009;131:6050-1
|
| [15] |
Min H,Kim J.Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes.Nature2021;598:444-50
|
| [16] |
Best research-cell efficiency chart. Available from: https://www.nrel.gov/pv/cell-efficiency.html. [Last accessed on 21 Jan 2025]
|
| [17] |
Hassan Y,Crawford ML.Ligand-engineered bandgap stability in mixed-halide perovskite LEDs.Nature2021;591:72-7
|
| [18] |
Ma D,Dong Y.Distribution control enables efficient reduced-dimensional perovskite LEDs.Nature2021;599:594-8
|
| [19] |
Lin K,Quan LN.Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent.Nature2018;562:245-8
|
| [20] |
Wei Y,Lin J.An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs.Chem Soc Rev2019;48:310-50
|
| [21] |
Xiao Z.Progress in theoretical study of metal halide perovskite solar cell materials.Adv Energy Mater2017;7:1701136
|
| [22] |
Kieslich G,Cheetham AK.Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog.Chem Sci2014;5:4712-5
|
| [23] |
Kieslich G,Cheetham AK.An extended tolerance factor approach for organic-inorganic perovskites.Chem Sci2015;6:3430-3 PMCID:PMC5492664
|
| [24] |
Bartel CJ,Goldsmith BR.New tolerance factor to predict the stability of perovskite oxides and halides.Sci Adv2019;5:eaav0693 PMCID:PMC6368436
|
| [25] |
Trizio L, Infante I, Abdelhady AL, Brovelli S, Manna L. Guidelines for the characterization of metal halide nanocrystals.Trends Chem2021;3:631-44
|
| [26] |
Si H,Ma S.Emerging conductive atomic force microscopy for metal halide perovskite materials and solar cells.Adv Energy Mater2020;10:1903922
|
| [27] |
Qin M,Lu X.A Systematic review of metal halide perovskite crystallization and film formation mechanism unveiled by in situ GIWAXS.Adv Mater2021;33:e2105290
|
| [28] |
Song K,Zhang D,Jin S.Atomic-resolution imaging of halide perovskites using electron microscopy.Adv Energy Mater2020;10:1904006
|
| [29] |
Kirchartz T,Stolterfoht M.Photoluminescence-based characterization of halide perovskites for photovoltaics.Adv Energy Mater2020;10:1904134
|
| [30] |
Zai H,Chen Q.Ion migration in halide perovskite solar cells: mechanism, characterization, impact and suppression.J Energy Chem2021;63:528-49
|
| [31] |
Duong T,Shen H.Structural engineering using rubidium iodide as a dopant under excess lead iodide conditions for high efficiency and stable perovskites.Nano Energy2016;30:330-40
|
| [32] |
Ran C,Gao W,Dou S.Defects in metal triiodide perovskite materials towards high-performance solar cells: origin, impact, characterization, and engineering.Chem Soc Rev2018;47:4581-610
|
| [33] |
Chen B,Yang S,Huang J.Imperfections and their passivation in halide perovskite solar cells.Chem Soc Rev2019;48:3842-67
|
| [34] |
Haider M,Schwan E,Kabius B.Electron microscopy image enhanced.Nature1998;392:768-9
|
| [35] |
Muller DA.Structure and bonding at the atomic scale by scanning transmission electron microscopy.Nat Mater2009;8:263-70
|
| [36] |
Qi R,Du J.Four-dimensional vibrational spectroscopy for nanoscale mapping of phonon dispersion in BN nanotubes.Nat Commun2021;12:1179 PMCID:PMC7896073
|
| [37] |
Yan X,Gadre CA.Single-defect phonons imaged by electron microscopy.Nature2021;589:65-9
|
| [38] |
Yao L,Zhang H.In situ visualization of sodium transport and conversion reactions of FeS2 nanotubes made by morphology engineering.Nano Energy2019;60:424-31
|
| [39] |
Chen S,Han B.Atomic-scale imaging of CH3NH3PbI3 structure and its decomposition pathway.Nat Commun2021;12:5516 PMCID:PMC8448763
|
| [40] |
Zhang D,Liu L.Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials.Science2018;359:675-9
|
| [41] |
Levin BDA.Direct detectors and their applications in electron microscopy for materials science.J Phys Mater2021;4:042005
|
| [42] |
Roberts P,Macleod A.A CCD-based image recording system for the CTEM.Ultramicroscopy1982;8:385-96
|
| [43] |
Lazić I,Lazar S.Phase contrast STEM for thin samples: integrated differential phase contrast.Ultramicroscopy2016;160:265-80
|
| [44] |
Ophus C.Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond.Microsc Microanal2019;25:563-82
|
| [45] |
Xiao C,Guthrey H.Mechanisms of electron-beam-induced damage in perovskite thin films revealed by cathodoluminescence spectroscopy.J Phys Chem C2015;119:26904-11
|
| [46] |
Cai Z,Chen S.Energy-dependent knock-on damage of organic-inorganic hybrid perovskites under electron beam irradiation: first-principles insights.Appl Phys Lett2021;119:123901
|
| [47] |
Liu W,Shang M.Electron-beam irradiation-hard metal-halide perovskite nanocrystals.J Mater Chem A2019;7:10912-7
|
| [48] |
Rothmann MU,Zhu Y.Structural and chemical changes to CH3NH3PbI3 induced by electron and gallium ion beams.Adv Mater2018;30:e1800629
|
| [49] |
Cai S,Zhang Y.Intragrain impurity annihilation for highly efficient and stable perovskite solar cells.Nat Commun2024;15:2329 PMCID:PMC10940583
|
| [50] |
Rothmann MU,Zhu Y.Direct observation of intrinsic twin domains in tetragonal CH3NH3PbI3.Nat Commun2017;8:14547 PMCID:PMC5331338
|
| [51] |
Chen S,Zhang X.General decomposition pathway of organic-inorganic hybrid perovskites through an intermediate superstructure and its suppression mechanism.Adv Mater2020;32:e2001107
|
| [52] |
Chen S,Zhao J.Transmission electron microscopy of organic-inorganic hybrid perovskites: myths and truths.Sci Bull (Beijing)2020;65:1643-9
|
| [53] |
Li Y,Li Y.Unravelling atomic structure and degradation mechanisms of organic-inorganic halide perovskites by cryo-EM.Joule2019;3:2854-66
|
| [54] |
Zhu Y,Wang Q.Direct atomic scale characterization of the surface structure and planar defects in the organic-inorganic hybrid CH3NH3PbI3 by cryo-TEM.Nano Energy2020;73:104820
|
| [55] |
Aguiar JA,Holesinger TG.In situ investigation of the formation and metastability of formamidinium lead tri-iodide perovskite solar cells.Energy Environ Sci2016;9:2372-82
|
| [56] |
Dang Z,Palazon F.In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals.ACS Nano2017;11:2124-32
|
| [57] |
Chen S,Zhao J.Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite.Nat Commun2018;9:4807 PMCID:PMC6237850
|
| [58] |
Doherty TAS,Kubicki DJ.Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases.Science2021;374:1598-605
|
| [59] |
Rothmann MU,Borchert J.Atomic-scale microstructure of metal halide perovskite.Science2020;370:eabb5940
|
| [60] |
Ning Z,Comin R.Quantum-dot-in-perovskite solids.Nature2015;523:324-8
|
| [61] |
Jung HJ,Kanatzidis MG.Self-passivation of 2D ruddlesden-popper perovskite by polytypic surface PbI2 encapsulation.Nano Lett2019;19:6109-17
|
| [62] |
Gao G,Zhou H.Novel inorganic perovskite quantum dots for photocatalysis.Nanoscale2017;9:12032-8
|
| [63] |
Wang D,Dong D.Polarized emission from CsPbX3 perovskite quantum dots.Nanoscale2016;8:11565-70
|
| [64] |
Guo S,Hao M.Liquid-phase transfer of organic–inorganic halide perovskite films for TEM investigation and planar heterojunction fabrication.Adv Opt Mater2024;12:2301255
|
| [65] |
Lyu B,Wang Q.Pattern-matched polymer ligands toward near-perfect synergistic passivation for high-performance and stable Br/Cl mixed perovskite light-emitting diodes.Angew Chem Int Ed2024;63:e202408726
|
| [66] |
Chen F,Yao K.Homogeneous mono-layer mixed-halide perovskite quantum dots towards blue light-emitting diodes with stable spectra under continuous driving.Chem Eng J2024;486:150435
|
| [67] |
Otero-Martínez C,Ivanov YP.Ultrasmall CsPbBr3 blue emissive perovskite quantum dots using K-alloyed Cs4PbBr6 nanocrystals as precursors.ACS Energy Lett2024;9:2367-77
|
| [68] |
Zhou Y,Padture NP.Transmission electron microscopy of halide perovskite materials and devices.Joule2019;3:641-61
|
| [69] |
Kosasih FU.Characterising degradation of perovskite solar cells through in-situ and operando electron microscopy.Nano Energy2018;47:243-56
|
| [70] |
Yao L,Zhang S.Low-dose transmission electron microscopy study on halide perovskites: application and challenges.EnergyChem2023;5:100105
|
| [71] |
Han Y,Cao K.In situ TEM characterization and modulation for phase engineering of nanomaterials.Chem Rev2023;123:14119-84
|
| [72] |
Sharma R.An environmental transmission electron microscope for in situ synthesis and characterization of nanomaterials.J Mater Res2005;20:1695-707
|
| [73] |
Jinschek JR.Advances in the environmental transmission electron microscope (ETEM) for nanoscale in situ studies of gas-solid interactions.Chem Commun2014;50:2696-706.
|
| [74] |
Allen, J. J. Micro electro mechanical system design. 1th ed. CRC Press; 2005. p. 496. Available from: https://doi.org/10.1201/9781420027754. [Last accessed on 22 Jan 2025]
|
| [75] |
Alfarano G. Eco-energy of subtle design. In: Gambardella, C.; editors. For nature/with nature: new sustainable design scenarios. Springer series in design and innovation. Springer, Cham; 2024. pp. 105-23. Available from: https://doi.org/10.1007/978-3-031-53122-4_8. [Last accessed on 22 Jan 2025]
|
| [76] |
Fan Z,Baumann D.In situ transmission electron microscopy for energy materials and devices.Adv Mater2019;31:e1900608
|
| [77] |
Song Z.A literature review of in situ transmission electron microscopy technique in corrosion studies.Micron2018;112:69-83
|
| [78] |
Grancini G,Prato M.The impact of the crystallization processes on the structural and optical properties of hybrid perovskite films for photovoltaics.J Phys Chem Lett2014;5:3836-42
|
| [79] |
Yang S,Liu Z.Recent advances in CsPbX3 perovskite solar cells: focus on crystallization characteristics and controlling strategies.Adv Energy Mater2023;13:2201733
|
| [80] |
Xie Y,Yip H.Metal-halide perovskite crystallization kinetics: a review of experimental and theoretical studies.Adv Energy Mater2021;11:2100784
|
| [81] |
Kim BH,Lee D,Hyeon T.Liquid-phase transmission electron microscopy for studying colloidal inorganic nanoparticles.Adv Mater2018;30:1703316
|
| [82] |
Yuan W,You R,Wang Y.Toward in situ atomistic design of catalytic active sites via controlled atmosphere transmission electron microscopy.Acc Mater Res2023;4:275-86
|
| [83] |
Tang M,Ou Y.Recent progresses on structural reconstruction of nanosized metal catalysts via controlled-atmosphere transmission electron microscopy: a review.ACS Catal2020;10:14419-50
|
| [84] |
Fang K,Wagner JB,Wang Y.In-situ gas transmission electron microscopy. In: Sun, L.; Xu, T.; Zhang, Z.; editors. In-situ transmission electron microscopy. Singapore: Springer Nature; 2023. pp. 251-325.
|
| [85] |
Stoumpos CC,Kanatzidis MG.Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties.Inorg Chem2013;52:9019-38
|
| [86] |
Qin F,Wang ZL.Anomalous growth and coalescence dynamics of hybrid perovskite nanoparticles observed by liquid-cell transmission electron microscopy.ACS Nano2016;10:9787-93
|
| [87] |
Lifshitz I.The kinetics of precipitation from supersaturated solid solutions.J Phys Chem Solids1961;19:35-50
|
| [88] |
Wagner C.Theorie der alterung von niederschlägen durch umlösen (ostwald-reifung).Z Elektrochemie, Ber Bunsenges phys Chemie1961;65:581-91
|
| [89] |
Viswanatha R,Dasgupta C.Growth mechanism of nanocrystals in solution: ZnO, a case study.Phys Rev Lett2007;98:255501
|
| [90] |
Aguiar JA,Alkurd NR.Effect of water vapor, temperature, and rapid annealing on formamidinium lead triiodide perovskite crystallization.ACS Energy Lett2016;1:155-61
|
| [91] |
Wang W,Yan H.The growth dynamics of organic-inorganic metal halide perovskite films.J Am Chem Soc2022;144:17848-56
|
| [92] |
Zhang X,Zhang B,Jie W.Ferroelastic domains in a CsPbBr3 single crystal and their phase transition characteristics: an in situ TEM study.Cryst Growth Des2020;20:4585-92
|
| [93] |
Gu J,Jin C.Solvent engineering for high conversion yields of layered raw materials into large-scale freestanding hybrid perovskite nanowires.Nanoscale2018;10:17722-9
|
| [94] |
Ren Y,Duan B.Controllable intermediates by molecular self-assembly for optimizing the fabrication of large-grain perovskite films via one-step spin-coating.J Alloys Compd2017;705:205-10
|
| [95] |
Munir R,Abdelsamie M.Hybrid perovskite thin-film photovoltaics: in situ diagnostics and importance of the precursor solvate phases.Adv Mater2017;29:1604113
|
| [96] |
Sidhoum C,Ihiawakrim D.Shedding light on the birth of hybrid perovskites: a correlative study by in situ electron microscopy and synchrotron-based X-ray scattering.Chem Mater2023;35:7943-56
|
| [97] |
Ma M,Chen X.In situ imaging of the atomic phase transition dynamics in metal halide perovskites.Nat Commun2023;14:7142 PMCID:PMC10628210
|
| [98] |
Wu X,Sui M.Recent progress on advanced transmission electron microscopy characterization for halide perovskite semiconductors.J Semicond2022;43:041106
|
| [99] |
Funk H,Eljarrat A,Koch CT.In situ TEM monitoring of phase-segregation in inorganic mixed halide perovskite.J Phys Chem Lett2020;11:4945-50
|
| [100] |
Saka H,Ara S.In situ heating transmission electron microscopy.MRS Bull2008;33:93-100
|
| [101] |
Ross FM.In situ transmission electron microscopy. In: Hawkes, P. W.; Spence, J. C. H.; editors. Science of microscopy. New York: Springer; 2007. pp. 445-534.
|
| [102] |
Zhao J,Tang S.Graphene microheater chips for in situ TEM.Nano Lett2023;23:726-34
|
| [103] |
Divitini G,Matteocci F,Di Carlo A.In situ observation of heat-induced degradation of perovskite solar cells.Nat Energy2016;1:1-6
|
| [104] |
Yang B,Ming W.Observation of nanoscale morphological and structural degradation in perovskite solar cells by in situ TEM.ACS Appl Mater Interfaces2016;8:32333-40
|
| [105] |
Kim TW,Cojocaru L,Kondo T.Real-time in situ observation of microstructural change in organometal halide perovskite induced by thermal degradation.Adv Funct Materials2018;28:1804039
|
| [106] |
Rombach FM,Macdonald TJ.Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells.Energy Environ Sci2021;14:5161-90
|
| [107] |
Ren G,Deng Y.Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review.J Mater Chem A2021;9:4589-625
|
| [108] |
Tumen-ulzii G,Matsushima T.Understanding the degradation of spiro-OMeTAD-based perovskite solar cells at high temperature.Solar RRL2020;4:2000305
|
| [109] |
Wang Y,Zhang M.PTAA as efficient hole transport materials in perovskite solar cells: a review.Solar RRL2022;6:2200234
|
| [110] |
Seo Y,Kim D,Na S.In situ TEM observation of the heat-induced degradation of single- and triple-cation planar perovskite solar cells.Nano Energy2020;77:105164
|
| [111] |
Ma M,Xu L.Atomically unraveling the structural evolution of surfaces and interfaces in metal halide perovskite quantum dots.Adv Mater2023;35:e2300653
|
| [112] |
Jeangros Q,Werner J.In situ TEM analysis of organic-inorganic metal-halide perovskite solar cells under electrical bias.Nano Lett2016;16:7013-8
|
| [113] |
Zheng F,Migunov V,Pozzi G.Measurement of charge density in nanoscale materials using off-axis electron holography.J Electron Spectrosc Relat Phenom2020;241:146881
|
| [114] |
Jung HJ,Kim S,Dravid VP.Stability of halide perovskite solar cell devices: in situ observation of oxygen diffusion under biasing.Adv Mater2018;30:e1802769
|
| [115] |
Kim M,Cheng D.Imaging real-time amorphization of hybrid perovskite solar cells under electrical biasing.ACS Energy Lett2021;6:3530-7
|
| [116] |
Żak AM.Light-induced in situ transmission electron microscopy-development, challenges, and perspectives.Nano Lett2022;22:9219-26 PMCID:PMC9756336
|
| [117] |
Cai S,Wei Y,Pan X.Development of in situ optical-electrical MEMS platform for semiconductor characterization.Ultramicroscopy2018;194:57-63
|
| [118] |
Duan T,Cai S.On-chip light-incorporated in situ transmission electron microscopy of metal halide perovskite materials.ACS Energy Lett2023;8:3048-53
|
| [119] |
Fan Z,Wang Y.Layer-by-layer degradation of methylammonium lead tri-iodide perovskite microplates.Joule2017;1:548-62
|
| [120] |
Akhavan Kazemi MA,Cherednichekno K.Molecular-level insight into correlation between surface defects and stability of methylammonium lead halide perovskite under controlled humidity.Small Methods2021;5:e2000834
|
| [121] |
Draguta S,Yoon SJ.Rationalizing the light-induced phase separation of mixed halide organic-inorganic perovskites.Nat Commun2017;8:200 PMCID:PMC5544754
|
| [122] |
Abdelmageed G,Hellier K.Mechanisms for light induced degradation in MAPbI3 perovskite thin films and solar cells.Appl Phys Lett2016;109:233905
|
| [123] |
Siegler TD,Meng Y.Water-accelerated photooxidation of CH3NH3PbI3 perovskite.J Am Chem Soc2022;144:5552-61
|
| [124] |
Song Z,Phillips AB.Probing the origins of photodegradation in organic-inorganic metal halide perovskites with time-resolved mass spectrometry.Sustain Energy Fuels2018;2:2460-7
|
| [125] |
Liu D,Li C,Yan Y.Structural properties and stability of inorganic CsPbI3 perovskites.Small Struct2021;2:2000089
|
| [126] |
Saliba M,Seo JY.Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency.Energy Environ Sci2016;9:1989-97 PMCID:PMC4936376
|
| [127] |
Macpherson S,Winchester AJ.Local nanoscale phase impurities are degradation sites in halide perovskites.Nature2022;607:294-300
|
| [128] |
Deng YH.Truth and myth of phase coexistence in methylammonium lead iodide perovskite thin film via transmission electron microscopy.Adv Mater2021;33:e2008122
|
| [129] |
Deng Y.Common phase and structure misidentifications in high-resolution TEM characterization of perovskite materials.Condens Matter2021;6:1
|
| [130] |
Kim M,Cheng D,Jung HS.Advanced characterization techniques for overcoming challenges of perovskite solar cell materials.Adv Energy Mater2021;11:2001753
|
| [131] |
Ren Z,Davydok A.Scanning force microscope for in situ nanofocused X-ray diffraction studies.J Synchrotron Radiat2014;21:1128-33
|
| [132] |
Bergmann VW,Javier Ramos F.Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell.Nat Commun2014;5:5001
|
| [133] |
Ferrer Orri J,Kusch G.Using pulsed mode scanning electron microscopy for cathodoluminescence studies on hybrid perovskite films.Nano Ex2021;2:024002
|
| [134] |
Hu Q,Wu J.In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6]4- cage nanoparticles.Nat Commun2017;8:15688
|
| [135] |
Wang H,Wang J,Hou J.The development of iDPC-STEM and its application in electron beam sensitive materials.Molecules2022;27:3829 PMCID:PMC9231126
|
| [136] |
Bosch EG,Lazar S.Integrated differential phase contrast (iDPC) STEM: a new atomic resolution STEM technique to image all elements across the periodic table.Microsc Microanal2016;22:306-7
|
| [137] |
Shen B,Xiong H.Atomic imaging of zeolite-confined single molecules by electron microscopy.Nature2022;607:703-7
|
| [138] |
Xiong H,Chen X.In situ imaging of the sorption-induced subcell topological flexibility of a rigid zeolite framework.Science2022;376:491-6
|
| [139] |
Caswell TA,Tate MW,Gruner SM.A high-speed area detector for novel imaging techniques in a scanning transmission electron microscope.Ultramicroscopy2009;109:304-11
|
| [140] |
Tate MW,Chamberlain D.High dynamic range pixel array detector for scanning transmission electron microscopy.Microsc Microanal2016;22:237-49
|
| [141] |
Han Y,Nguyen K.Picometer-precision strain mapping of two-dimensional heterostructures using an electron microscope pixel array detector (EMPAD).Microsc Microanal2017;23:1712-3
|
| [142] |
Jiang Y,Han Y.Electron ptychography of 2D materials to deep sub-ångström resolution.Nature2018;559:343-9
|
| [143] |
Philipp H,Shanks K.Wide dynamic range, 10 kHz framing detector for 4D-STEM.Microsc Microanal2021;27:992-3
|
| [144] |
Philipp HT,Shanks KS.Very-high dynamic range, 10,000 frames/second pixel array detector for electron microscopy.Microsc Microanal2022;28:425-40
|
| [145] |
Scheid A,Jung M.Electron ptychographic phase imaging of beam-sensitive all-inorganic halide perovskites using four-dimensional scanning transmission electron microscopy.Microsc Microanal2023;29:869-78
|
| [146] |
Song B,Allen CS.Hollow electron ptychographic siffractive imaging.Phys Rev Lett2018;121:146101
|
| [147] |
Maiden AM.An improved ptychographical phase retrieval algorithm for diffractive imaging.Ultramicroscopy2009;109:1256-62
|
| [148] |
Chen Z,Shao YT.Electron ptychography achieves atomic-resolution limits set by lattice vibrations.Science2021;372:826-31
|
| [149] |
Aidukas T,Loetgering L,Horstmeyer R.Applications and extensions of fourier ptychography.Microscopy Today2022;30:40-5
|