Direct visualization of spin-dependent orbital geometry on the Na2IrO3 surface with ultra-high resolution

Xin Zhang , Zongyuan Zhang , Jasminka Terzic , Zhibin Shao , Haigen Sun , Shaojian Li , Krisztián Palotás , Haoxuan Ding , Gang Cao , Wenliang Zhu , Haiping Lin , Jianzhi Gao , Minghu Pan

Microstructures ›› 2024, Vol. 4 ›› Issue (3) : 2024039

PDF
Microstructures ›› 2024, Vol. 4 ›› Issue (3) :2024039 DOI: 10.20517/microstructures.2023.99
Research Article

Direct visualization of spin-dependent orbital geometry on the Na2IrO3 surface with ultra-high resolution

Author information +
History +
PDF

Abstract

The honeycomb iridate Na2IrO3, as a candidate for the Kitaev model, has drawn increasing attention in recent years. It is a rare example of a strongly correlated, topologically nontrivial band structure that may have protected quantum spin Hall states. The nature of its intriguing insulating phase and magnetic order is still under debate. In the present work, we combine low-temperature scanning tunneling microscopy/spectroscopy and density functional theory calculations to show that Na2IrO3 exhibits a band gap of 420 meV at 77 K, indicating a novel relativistic Mott insulator rather than Slater-like states. In addition, it is demonstrated that the Ir-O-Ir bonds and the subtle local density of states variation of Ir atoms induced by spin correlations can be imaged in real space in ultra-high resolution utilizing a spin-polarized oxygen-functionalized scanning tunneling microscopy tip. The direct observation of the zigzag Ir-O-Ir bonds at 77 K strongly dictates the zigzag magnetic ordering below TN ≈ 15 K because of the strong spin-orbit interactions that lock the lattice and magnetic moments.

Keywords

Iridate / scanning tunneling microscopy / strong-correlated materials / high-resolution imaging / spin-correlation

Cite this article

Download citation ▾
Xin Zhang, Zongyuan Zhang, Jasminka Terzic, Zhibin Shao, Haigen Sun, Shaojian Li, Krisztián Palotás, Haoxuan Ding, Gang Cao, Wenliang Zhu, Haiping Lin, Jianzhi Gao, Minghu Pan. Direct visualization of spin-dependent orbital geometry on the Na2IrO3 surface with ultra-high resolution. Microstructures, 2024, 4(3): 2024039 DOI:10.20517/microstructures.2023.99

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chaloupka J,Khaliullin G.Kitaev-Heisenberg model on a honeycomb lattice: possible exotic phases in iridium oxides A2IrO3.Phys Rev Lett2010;105:027204

[2]

Choi SK,Kolmogorov AN.Spin waves and revised crystal structure of honeycomb iridate Na2IrO3.Phys Rev Lett2012;108:127204

[3]

Chaloupka J,Khaliullin G.Zigzag magnetic order in the iridium oxide Na2IrO3.Phys Rev Lett2013;110:097204

[4]

Liu X,Yin W.Long-range magnetic ordering in Na2IrO3.Phys Rev B2011;83:220403

[5]

Hu K,Feng J.First-principles study of the magnetic structure of Na2IrO3.Phys Rev Lett2015;115:167204

[6]

Takagi H,Jackeli G,Nagler SE.Concept and realization of Kitaev quantum spin liquids.Nat Rev Phys2019;1:264-80

[7]

Shitade A,Kunes J,Zhang SC.Quantum spin Hall effect in a transition metal oxide Na2IrO3.Phys Rev Lett2009;102:256403

[8]

Kim CH,Jeong H,Yu J.Topological quantum phase transition in 5d transition metal oxide Na2IrO3.Phys Rev Lett2012;108:106401

[9]

Sohn CH,Qi TF.Mixing between Jeff = 1/2 and 3/2 orbitals in Na2IrO3: a spectroscopic and density functional calculation study.Phys Rev B2013;88:085125

[10]

Singh Y.Antiferromagnetic Mott insulating state in single crystals of the honeycomb lattice material Na2IrO3.Phys Rev B2010;82:064412

[11]

Comin R,Ludbrook B.Na2IrO3 as a novel relativistic Mott insulator with a 340-meV gap.Phys Rev Lett2012;109:266406

[12]

Gretarsson H,Liu X.Crystal-field splitting and correlation effect on the electronic structure of A2IrO3.Phys Rev Lett2013;110:076402

[13]

Kim HJ,Cho JH.Antiferromagnetic slater insulator phase of Na2IrO3.Sci Rep2014;4:5253 PMCID:PMC4052719

[14]

Ye F,Cao H.Direct evidence of a zigzag spin-chain structure in the honeycomb lattice: a neutron and X-ray diffraction investigation of single-crystal Na2IrO3.Phys Rev B2012;85:180403

[15]

Kimchi I.Kitaev-Heisenberg-J2-J3 model for the iridates A2IrO3.Phys Rev B2011;84:180407

[16]

Bhattacharjee S,Kim YB.Spin-orbital locking, emergent pseudo-spin and magnetic order in honeycomb lattice iridates.New J Phys2012;14:073015

[17]

Rau JG,Kee HY.Generic spin model for the honeycomb iridates beyond the Kitaev limit.Phys Rev Lett2014;112:077204

[18]

Baek SH,Choi KY.Evidence for a field-induced quantum spin liquid in α-Rucl3.Phys Rev Lett2017;119:037201

[19]

Bastien G,Yadav R.Pressure-induced dimerization and valence bond crystal formation in the Kitaev-Heisenberg magnet α-RuCl3.Phys Rev B2018;97:037201

[20]

Hu K,Wei Y,Feng J.Bond ordering and phase transitions in Na2IrO3 under high pressure.Phys Rev B2018;98:100103

[21]

Simutis G,Rolfs K.Chemical and hydrostatic-pressure effects on the Kitaev honeycomb material Na2IrO3.Phys Rev B2018;98:104421

[22]

Xi X,Xu XS.Honeycomb lattice Na2IrO3 at high pressures: a robust spin-orbit Mott insulator.Phys Rev B2018;98:125117

[23]

Jiang H,Qi X.Possible proximity of the Mott insulating iridate Na2IrO3 to a topological phase: phase diagram of the Heisenberg-Kitaev model in a magnetic field.Phys Rev B2011;83:245104

[24]

Reuther J,Trebst S.Finite-temperature phase diagram of the Heisenberg-Kitaev model.Phys Rev B2011;84:100406

[25]

Yamaji Y,Kurita M,Imada M.First-principles study of the honeycomb-lattice iridates Na2IrO3 in the presence of strong spin-orbit interaction and electron correlations.Phys Rev Lett2014;113:107201

[26]

Rousochatzakis I,Thomale R,Perkins N.Phase diagram and quantum order by disorder in the Kitaev K1-K2 honeycomb magnet.Phys Rev X2015;5:041035

[27]

Fischer Ø,Maggio-aprile I,Renner C.Scanning tunneling spectroscopy of high-temperature superconductors.Rev Mod Phys2007;79:353-419

[28]

Dziuba T,Stark M,Gegenwart P.Surface conductivity of the honeycomb spin-orbit mott insulator Na2IrO3.Phys Status Solidi B2021;258:2000421

[29]

Wiesendanger R,Güntherodt G,Ruf R.Observation of vacuum tunneling of spin-polarized electrons with the scanning tunneling microscope.Phys Rev Lett1990;65:247-50

[30]

Wiesendanger R,Tarrach G.Vacuum tunneling of spin-polarized electrons detected by scanning tunneling microscopy.J Vac Sci Technol B1991;9:519-24

[31]

Oka H,Corbetta M,Sander D.Spin-polarized quantum confinement in nanostructures: scanning tunneling microscopy.Rev Mod Phys2014;86:1127-68

[32]

Pratzer M,Bode M,Kubetzka A.Atomic-scale magnetic domain walls in quasi-one-dimensional Fe nanostripes.Phys Rev Lett2001;87:127201

[33]

Kubetzka A,Pietzsch O.Spin-polarized scanning tunneling microscopy with antiferromagnetic probe tips.Phys Rev Lett2002;88:057201

[34]

Wachowiak A,Bode M,Morgenstern M.Direct observation of internal spin structure of magnetic vortex cores.Science2002;298:577-80

[35]

Bode M,von Bergmann K.Chiral magnetic order at surfaces driven by inversion asymmetry.Nature2007;447:190-3

[36]

Horcas I,Gómez-Rodríguez JM,Gómez-Herrero J.WSXM: a software for scanning probe microscopy and a tool for nanotechnology.Rev Sci Instrum2007;78:013705

[37]

Kresse G.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys Rev B Condens Matter1996;54:11169-86

[38]

Kresse G.From ultrasoft pseudopotentials to the projector augmented-wave method.Phys Rev B1999;59:1758-75

[39]

Perdew JP,Ernzerhof M.Generalized gradient approximation made simple.Phys Rev Lett1996;77:3865-8

[40]

Hofer WA,Shluger AL.Theories of scanning probe microscopes at the atomic scale.Rev Mod Phys2003;75:1287-331

[41]

Park K,Pan M,Yu N.Nanoclusters of TiO2 wetted with gold.Surf Sci2009;603:3131-5

[42]

Li G,Pan M.Atomic-scale fingerprint of Mn dopant at the surface of Sr3(Ru1-xMnx)2O7.Sci Rep2013;3:2882 PMCID:PMC3794371

[43]

Lüpke F,Erwin SC,Gegenwart P.Highly unconventional surface reconstruction of Na2IrO3 with persistent energy gap.Phys Rev B2015;91:041405

[44]

Kim BJ,Moon SJ.Novel Jeff = 1/2 Mott state induced by relativistic spin-orbit coupling in Sr2IrO4.Phys Rev Lett2008;101:076402

[45]

Kim BJ,Komesu T.Phase-sensitive observation of a spin-orbital Mott state in Sr2IrO4.Science2009;323:1329-32

[46]

Calder S,McMorrow DF.Magnetically driven metal-insulator transition in NaOsO3.Phys Rev Lett2012;108:257209

[47]

Slater JC.Magnetic effects and the hartree-fock equation.Phys Rev1951;82:538-41

[48]

Gross L,Moll N,Meyer G.The chemical structure of a molecule resolved by atomic force microscopy.Science2009;325:1110-4

[49]

Zhang J,Yuan B,Cheng Z.Real-space identification of intermolecular bonding with atomic force microscopy.Science2013;342:611-4

[50]

Hwan Chun S,Kim J.Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na2IrO3.Nat Phys2015;11:462-6

AI Summary AI Mindmap
PDF

42

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/