Engineering electrode microstructures for advanced lithium-ion batteries

Zhou Chen , Cheng Zhang

Microstructures ›› 2024, Vol. 4 ›› Issue (3) : 2024033

PDF
Microstructures ›› 2024, Vol. 4 ›› Issue (3) :2024033 DOI: 10.20517/microstructures.2023.89
Perspective

Engineering electrode microstructures for advanced lithium-ion batteries

Author information +
History +
PDF

Abstract

The architecture of anode materials is an essential factor in improving the performance of energy storage devices, which meets the increasing demand for energy storage and helps achieve environmental sustainability targets. Atomic manufacturing allows the makeup of electrodes to be changed precisely at the atomic level. This facilitates the creation of electrode materials with specific physical properties and enhanced performance. This Perspective reviews the details of how the microstructure design influences key electrode material characteristics. Finally, we anticipate the potential of materials and manufacturing techniques for materials microstructure in the future. A thorough grasp of the materials microstructure in electrode materials is offered by this article.

Keywords

Morphology / microstructures / high-performance / batteries

Cite this article

Download citation ▾
Zhou Chen, Cheng Zhang. Engineering electrode microstructures for advanced lithium-ion batteries. Microstructures, 2024, 4(3): 2024033 DOI:10.20517/microstructures.2023.89

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nykvist B.Rapidly falling costs of battery packs for electric vehicles.Nat Clim Change2015;5:329-32

[2]

Ziegler MS.Re-examining rates of lithium-ion battery technology improvement and cost decline.Energy Environ Sci2021;14:1635-51

[3]

Hundekar P,Lakhnot AS.Recent advances in the mitigation of dendrites in lithium-metal batteries.J Appl Phys2020;128:010903

[4]

Ellis BL,Nazar LF.Positive electrode materials for Li-ion and Li-batteries.Chem Mater2010;22:691-714

[5]

Lotfabad EM,Cui K.High-density sodium and lithium ion battery anodes from banana peels.ACS Nano2014;8:7115-29

[6]

Liu C,Ma LP.Advanced materials for energy storage.Adv Mater2010;22:E28-62

[7]

Naguib M,Lu J.New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries.J Am Chem Soc2013;135:15966-9

[8]

Wang Q,Miao J,Wang Y.Synthesis and electrochemical characterizations of Ce doped SnS2 anode materials for rechargeable lithium ion batteries.Electrochim Acta2013;93:120-30

[9]

Fu X,Huang J.Rethinking the electrode multiscale microstructures: a review on structuring strategies toward battery manufacturing genome.Adv Energy Mater2023;13:2301385

[10]

Lu X,Tan C.Multi-length scale microstructural design of lithium-ion battery electrodes for improved discharge rate performance.Energy Environ Sci2021;14:5929-46

[11]

Lee HJ,Chart Y.LiNi0.5Mn1.5O4 cathode microstructure for all-solid-state batteries.Nano Lett2022;22:7477-83 PMCID:PMC9523706

[12]

Li J,Liou F.Macro-/micro-controlled 3D lithium-ion batteries via additive manufacturing and electric field processing.Sci Rep2018;8:1846 PMCID:PMC5789829

[13]

Feng Z,Wang Z.Review of silicon-based alloys for lithium-ion battery anodes.Int J Miner Metall Mater2021;28:1549-64

[14]

Vernardou D.Recent report on the hydrothermal growth of LiFePO4 as a cathode material.Coatings2022;12:1543

[15]

Wang X,Sawczyk M.Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes.Nat Mater2022;21:1057-65

[16]

Wang Y,Azad FM.Fluorination in advanced battery design.Nat Rev Mater2024;9:119-33

[17]

Pam ME,Yu J.Microstructural engineering of cathode materials for advanced zinc-ion aqueous batteries.Adv Sci2020;8:2002722 PMCID:PMC7788579

[18]

Lin L,Wang S,Li B.Micro- and nano-structural design strategies towards polycrystalline nickel-rich layered cathode materials.J Mater Chem A2023;11:7867-97

[19]

Reddy MV,Chowdari BV.Metal oxides and oxysalts as anode materials for Li ion batteries.Chem Rev2013;113:5364-457

[20]

Mahmood N,Hou Y.Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective.Adv Energy Mater2016;6:1600374

[21]

Yuan C,Xie Y.Mixed transition-metal oxides: design, synthesis, and energy-related applications.Angew Chem Int Ed2014;53:1488-504

[22]

Chen G,Luo H.Nanoscale engineering of heterostructured anode materials for boosting lithium-ion storage.Adv Mater2016;28:7580-602

[23]

Poizot P,Grugeon S,Tarascon JM.Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.Nature2000;407:496-9

[24]

Zhu Z,Yin Z.Anion-redox nanolithia cathodes for Li-ion batteries.Nat Energy2016;1:16111

[25]

Cai W,Zhang K.Conductive nanocrystalline niobium carbide as high-efficiency polysulfides tamer for lithium-sulfur batteries.Adv Funct Mater2018;28:1704865

[26]

Roland A,Ledeuil J,Louvain N.How carbon coating or continuous carbon pitch matrix influence the silicon electrode/electrolyte interfaces and the performance in Li-ion batteries.Battery Energy2022;1:20210009

[27]

Kim H,Park MH.A critical size of silicon nano-anodes for lithium rechargeable batteries.Angew Chem Int Ed2010;49:2146-9

[28]

Abdelhamid AA,Yang J,Ying JY.Graphene-wrapped nickel sulfide nanoprisms with improved performance for Li-ion battery anodes and supercapacitors.Nano Energy2016;26:425-37

[29]

Zhu C,Yu Y.The nanoscale circuitry of battery electrodes.Science2017;358:eaao2808

[30]

Lu Y,Lou XW.Nanostructured conversion-type anode materials for advanced lithium-ion batteries.Chem2018;4:972-96

[31]

Mai L,Xu L,Meng J.One-dimensional hetero-nanostructures for rechargeable batteries.ACC Chem Res2018;51:950-9

[32]

Zhang X,Marie Sastry A.Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles.J Electrochem Soc2007;154:A910

[33]

Wu Y,Wang L.Recent progress on modification strategies of alloy-based anode materials for alkali-ion batteries.Chem Res Chin Univ2021;37:200-9

[34]

Li GA,Chang WC.Phosphorus-rich copper phosphide nanowires for field-effect transistors and lithium-ion batteries.ACS Nano2016;10:8632-44

[35]

Kennedy T,Geaney H,O’Dwyer C.High-performance germanium nanowire-based lithium-ion battery anodes extending over 1000 cycles through in situ formation of a continuous porous network.Nano Lett2014;14:716-23

[36]

Liu W,Sun J.Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers.Nano Lett2015;15:2740-5

[37]

Liu W,Lin D.Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires.Nat Energy2017;2:17035

[38]

Lei D,Magasinski A,Yushin G.Transformation of bulk alloys to oxide nanowires.Science2017;355:267-71

[39]

Cong L,Li J.Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries.Adv Energy Mater2017;7:1601906

[40]

Liu B,Shen G.Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries.Nano Today2016;11:82-97

[41]

Pomerantseva E,Feng X,Gogotsi Y.Energy storage: the future enabled by nanomaterials.Science2019;366:eaan8285

[42]

Rojaee R.Two-dimensional materials to address the lithium battery challenges.ACS Nano2020;14:2628-58

[43]

Zhao D,Wang Y.Electrochemical performance comparison of LiFePO4 supported by various carbon materials.Electrochim Acta2013;88:632-8

[44]

Zhao Y,Liu B.Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries.Nano Lett2014;14:2849-53

[45]

Casimir A,Ogoke O,Lu J.Silicon-based anodes for lithium-ion batteries: effectiveness of materials synthesis and electrode preparation.Nano Energy2016;27:359-76

[46]

Zhou G,Li F.Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries.Chem Mater2010;22:5306-13

[47]

Li S,Li B,Yu M.Self-assembly of 2D sandwich-structured MnFe2O4/graphene composites for high-performance lithium storage.Mater Res Bull2015;61:369-74

[48]

Wang B,Zhang X.Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes.ACS Nano2013;7:1437-45

[49]

Agyeman DA,Lee G,Kang Y.Carbon-coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy-density Li-ion battery.Adv Energy Mater2016;6:1600904

[50]

Wu P,Tang Y,Lu T.Three-dimensional interconnected network of graphene-wrapped porous silicon spheres: in situ magnesiothermic-reduction synthesis and enhanced lithium-storage capabilities.ACS Appl Mater Interfaces2014;6:3546-52

[51]

Zhang L,Lou XW.Iron-oxide-based advanced anode materials for lithium-ion batteries.Adv Energy Mater2014;4:1300958

[52]

Yu L,Wu HB.Complex hollow nanostructures: synthesis and energy-related applications.Adv Mater2017;29:1604563

[53]

Shi Y,Li B.Highly ordered mesoporous crystalline MoSe2 material with efficient visible-light-driven photocatalytic activity and enhanced lithium storage performance.Adv Funct Mater2013;23:1832-8

[54]

Zhao J,Hu Z,Shi J.Triazine-based porous organic polymers with enhanced electronegativity as multifunctional separator coatings in lithium-sulfur batteries.Nanoscale2021;13:12028-37

[55]

Sun M,Guan Y.Nanoscale melamine-based porous organic frameworks as host material for efficient polysulfides chemisorption in lithium-sulfur batteries.Nanotechnology2021;32:085402

[56]

Je SH,Kim J,Coskun A.Perfluoroaryl-elemental sulfur SNAr chemistry in covalent triazine frameworks with high sulfur contents for lithium-sulfur batteries.Adv Funct Mater2017;27:1703947

[57]

Kim J,Chung S,Choi JW.Covalent triazine frameworks incorporating charged polypyrrole channels for high-performance lithium-sulfur batteries.Chem Mater2020;32:4185-93

[58]

Liu J,Wang J.Design zwitterionic amorphous conjugated micro-/mesoporous polymer assembled nanotentacle as highly efficient sulfur electrocatalyst for lithium-sulfur batteries.Adv Energy Mater2021;11:2101926

[59]

Trogadas P,Strasser P,Coppens MO.Hierarchically structured nanomaterials for electrochemical energy conversion.Angew Chem Int Ed2016;55:122-48

[60]

Fuchigami T,Tanibata N,Kakimoto K.Growth mechanism of spiky Nb2O5 nanoparticles and their electrochemical property.Phys Status Solidi2022;259:2100642

[61]

Xing Y,Fang B,Wilkinson DP.N-doped hollow urchin-like anatase TiO2@C composite as a novel anode for Li-ion batteries.J Power Sources2018;385:10-7

[62]

Zhang L,Liu Y.Urchin-like MnO/C microspheres as high-performance lithium-ion battery anode.Ionics2021;27:1423-8

[63]

Liu J,Wang Q.Sea urchin-like Si@MnO2@rGO as anodes for high-performance lithium-ion batteries.Nanomaterials2022;12:285 PMCID:PMC8778068

[64]

Zou Y.Microwave solvothermal synthesis of flower-like SnS2 and SnO2 nanostructures as high-rate anodes for lithium ion batteries.Chem Eng J2013;229:183-9

[65]

Bhosale SV,Jadhav RW.Flower-like superstructures: structural features, applications and future perspectives.Chem Rec2021;21:257-83

[66]

Hao Q,Zhao Y.Flower-like MoSe2/MoO2 composite with high capacity and long-term stability for lithium-ion battery.Nanomaterials2019;9:1256 PMCID:PMC6780565

[67]

Chen X,Yan P,Zhan C.Flower-like metal oxide composite as an efficient sulfur host for stable and high-capacity lithium-sulfur batteries.J Solid State Chem2022;314:123430

[68]

Pan J,Liu J.One-step synthesis method of flower-like Si@NiO/rGO composites as high-performance anode for lithium-ion batteries.J Alloys Compd2023;947:169506

[69]

Wang X,Bai Y,Yin Y.Synthesis, properties, and applications of hollow micro-/nanostructures.Chem Rev2016;116:10983-1060

[70]

Wang Z,Lou XW.Metal oxide hollow nanostructures for lithium-ion batteries.Adv Mater2012;24:1903-11

[71]

Ma FX,Wu HB.Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties.Adv Mater2015;27:4097-101

[72]

Zhang G,Xiao C.General formation of complex tubular nanostructures of metal oxides for the oxygen reduction reaction and lithium-ion batteries.Angew Chem Int Ed2013;52:8643-7

[73]

Yu L,Xiao W.Formation of yolk-shelled Ni-Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries.Adv Energy Mater2015;5:1500981

[74]

Zhang G.General synthesis of multi-shelled mixed metal oxide hollow spheres with superior lithium storage properties.Angew Chem Int Ed2014;53:9041-4

[75]

Wu LL,Long Y.Multishelled NixCo3-xO4 hollow microspheres derived from bimetal-organic frameworks as anode materials for high-performance lithium-ion batteries.Small2017;13:1604270

[76]

Wang J,Tang H.Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries.Angew Chem Int Ed2013;52:6417-20

[77]

Zhang X,Gao S.Facile synthesis of yolk-shell MoO2 microspheres with excellent electrochemical performance as a Li-ion battery anode.J Mater Chem A2013;1:6858-64

[78]

Ko YN,Park SB.Preparation of yolk-shell and filled Co9S8 microspheres and comparison of their electrochemical properties.Chem Asian J2014;9:572-6

[79]

Lu Y,Wu M,Lou XWD.Construction of complex Co3O4@Co3V2O8 hollow structures from metal-organic frameworks with enhanced lithium storage properties.Adv Mater2018;30:1702875

[80]

Qi J,Wang J.Multi-shelled hollow micro-/nanostructures.Chem Soc Rev2015;44:6749-73

[81]

Bruce PG,Tarascon JM.Nanomaterials for rechargeable lithium batteries.Angew Chem Int Ed2008;47:2930-46

[82]

Ma Y,Yang M.Hollow multishelled structural ZnO fillers enhance the ionic conductivity of polymer electrolyte for lithium batteries.J Nanopart Res2023;25:14

[83]

Liu J,Wang J,Xue D.Template-free solvothermal synthesis of yolk-shell V2O5 microspheres as cathode materials for Li-ion batteries.Chem Commun2011;47:10380-2

[84]

Lou XW,Archer LA.Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage.Adv Mater2009;21:2536-9

[85]

Wang X,Guo Y.Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres.Adv Funct Mater2010;20:1680-6

[86]

Zhong J,Liu Y,Khan WS.Hollow core-shell eta-Fe2O3 microspheres with excellent lithium-storage and gas-sensing properties.Chem Commun2010;46:3869-71

[87]

Shen L,Yu XY,Lou XW.Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors.Angew Chem Int Ed2015;54:1868-72

[88]

Li Y,Lee H,Liu N.Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes.Nat Energy2016;1:15029

[89]

Jin Y,Kushima A.Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%.Energy Environ Sci2017;10:580-92

[90]

Lu S,Xu Y,Cao A.Hollow-structured electrode materials: self-templated synthesis and their potential in secondary batteries.ChemNanoMat2020;6:1298-314

[91]

Wu H,Ren J.CNT-assembled dodecahedra core@nickel hydroxide nanosheet shell enabled sulfur cathode for high-performance lithium-sulfur batteries.Nano Energy2019;55:82-92

[92]

Song Z,Jian X.Advanced nanostructured materials for electrocatalysis in lithium-sulfur batteries.Nanomaterials2022;12:4341 PMCID:PMC9736453

[93]

Wang F,Li L,Li Y.Graphdiyne nanostructure for high-performance lithium-sulfur batteries.Nano Energy2020;68:104307

[94]

Gu Y,Lin JD.Resolving nanostructure and chemistry of solid-electrolyte interphase on lithium anodes by depth-sensitive plasmon-enhanced Raman spectroscopy.Nat Commun2023;14:3536 PMCID:PMC10272176

[95]

Abdelhamid AA,Ying JY.Advances in and prospects of nanomaterials’ morphological control for lithium rechargeable batteries.Nano Energy2022;93:106860

[96]

Huang J,Du X.Nanostructures of solid electrolyte interphases and their consequences for microsized Sn anodes in sodium ion batteries.Energy Environ Sci2019;12:1550-7

AI Summary AI Mindmap
PDF

75

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/