Computational exploration of two-dimensional vacancy-free boridene sheet and its derivatives: high stabilities and the promise for hydrogen evolution reaction

Yuying Zhao , Jincan Zhang , Fengxian Ma , Hongbo Wu , Weizhen Meng , Ying Liu , Yalong Jiao , Aijun Du

Microstructures ›› 2024, Vol. 4 ›› Issue (3) : 2024032

PDF
Microstructures ›› 2024, Vol. 4 ›› Issue (3) :2024032 DOI: 10.20517/microstructures.2023.80
Research Article

Computational exploration of two-dimensional vacancy-free boridene sheet and its derivatives: high stabilities and the promise for hydrogen evolution reaction

Author information +
History +
PDF

Abstract

The recent synthesis of a two-dimensional (2D) MBene sheet, referred to as the boridene sheet (Mo4B6Tz), has ignited considerable interest in exploring 2D transition metal borides. Boridene has an ordered arrangement of metal vacancies, which are pivotal to its stability. Employing first-principles calculations, we explored the stable phases, electronic properties and catalytic abilities of boridene with different vacancy concentrations (Vm). Our results demonstrate that Vm significantly influences the cohesive energies of boridene sheets. Phonon spectrum and ab initio molecular dynamics simulations reveal the high stability of the vacancy-free boridene Mo6B6T6 (T = O, -OH), underscoring their potential for experimental realization. Substituting Mo atoms with Nb, Ta, or W enhances the structural stability of boridene sheets, leading to the identification of four stable variants: Nb6B6F6, Ta6B6F6, Ta6B6O6, and W6B6O6. These boridene sheets exhibit metallic behavior, with five structures displaying near-zero Gibbs free energy for hydrogen atom adsorption, indicating their potential as catalysts for the hydrogen evolution reaction. The uncovering of vacancy-free boridenes and their 2D derivatives greatly broadens the scope of the MBene family.

Keywords

2D materials / boridene / first-principles calculations / hydrogen evolution reaction

Cite this article

Download citation ▾
Yuying Zhao, Jincan Zhang, Fengxian Ma, Hongbo Wu, Weizhen Meng, Ying Liu, Yalong Jiao, Aijun Du. Computational exploration of two-dimensional vacancy-free boridene sheet and its derivatives: high stabilities and the promise for hydrogen evolution reaction. Microstructures, 2024, 4(3): 2024032 DOI:10.20517/microstructures.2023.80

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ryu B,Pu H,Chen J.Understanding, discovery, and synthesis of 2D materials enabled by machine learning.Chem Soc Rev2022;51:1899-925

[2]

Qiu HJ,Cong W.Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production.Angew Chem Int Ed2015;54:14031-5

[3]

Zhang Y,Jin C.Electronic structure, surface doping, and optical response in epitaxial WSe2 thin films.Nano Lett2016;16:2485-91

[4]

Jia Y,Gao G.A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting.Adv Mater2017;29:1700017

[5]

Gogotsi Y.MXenes: two-dimensional building blocks for future materials and devices.ACS Nano2021;15:5775-80

[6]

Jiang Z,Jiang X.MBene (MnB): a new type of 2D metallic ferromagnet with high Curie temperature.Nanoscale Horiz2018;3:335-41

[7]

Feng S,Wang J.Hexagonal MBene (Hf2BO2): a promising platform for the electrocatalysis of hydrogen evolution reaction.ACS Appl Mater Interfaces2021;13:56131-9

[8]

Li Y,Huang R.Computational screening of MBene monolayers with high electrocatalytic activity for the nitrogen reduction reaction.Nanoscale2021;13:15002-9

[9]

Michałowski PP,Mathis TS.Oxycarbide MXenes and MAX phases identification using monoatomic layer-by-layer analysis with ultralow-energy secondary-ion mass spectrometry.Nat Nanotechnol2022;17:1192-7

[10]

Zhou S,Pei W,Zhao J.MXene and MBene as efficient catalysts for energy conversion: roles of surface, edge and interface.J Phys Energy2021;3:012002

[11]

Bhat A,Bhat KS,Liao K.Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications.npj 2D Mater Appl2021;5:1-21

[12]

Li X,Shuck CE,Gogotsi Y.MXene chemistry, electrochemistry and energy storage applications.Nat Rev Chem2022;6:389-404

[13]

Pang J,Liu H.Potential of MXene-based heterostructures for energy conversion and storage.ACS Energy Lett2022;7:78-96

[14]

Shukla V.The tunable electric and magnetic properties of 2D MXenes and their potential applications.Mater Adv2020;1:3104-21

[15]

Gogotsi Y.The rise of MXenes.ACS Nano2019;13:8491-4

[16]

Anasori B,Gogotsi Y.2D metal carbides and nitrides (MXenes) for energy storage.Nat Rev Mater2017;2:16098

[17]

Khazaei M,Arai M,Yunoki S.Electronic properties and applications of MXenes: a theoretical review.J Mater Chem C2017;5:2488-503

[18]

Wang H,Yuan X.Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: state-of-the-art progresses and challenges.Adv Mater2018;30:e1704561

[19]

Yu XF,Cheng JB.Monolayer Ti2CO2: a promising candidate for NH₃ sensor or capturer with high sensitivity and selectivity.ACS Appl Mater Interfaces2015;7:13707-13

[20]

Fu Z,Legut D.Rational design of flexible two-dimensional mxenes with multiple functionalities.Chem Rev2019;119:11980-2031

[21]

Anand R,Umer M.Doped MXene combinations as highly efficient bifunctional and multifunctional catalysts for water splitting and metal-air batteries.J Mater Chem A2022;10:22500-11

[22]

Zhang B,Sun Z.MBenes: progress, challenges and future.J Mater Chem A2022;10:15865-80

[23]

Zhu H,Xue S.DFT practice in MXene-based materials for electrocatalysis and energy storage: from basics to applications.Ceram Int2022;48:27217-39

[24]

Yang X,Zhou S.MBenes: emerging 2D materials as efficient electrocatalysts for the nitrogen reduction reaction.Nanoscale Horiz2020;5:1106-15

[25]

Wang J,Luo G.Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction.Energy Environ Sci2018;11:3375-9

[26]

Zhang T,Peng Q,Sun Z.Mo2B2 MBene-supported single-atom catalysts as bifunctional HER/OER and OER/ORR electrocatalysts.J Mater Chem A2021;9:433-41

[27]

Khazaei M,Estili M.Novel MAB phases and insights into their exfoliation into 2D MBenes.Nanoscale2019;11:11305-14

[28]

Zhang H,Dai F,Zhou Y.First demonstration of possible two-dimensional MBene CrB derived from MAB phase Cr2AlB2.J Mater Sci Technol2018;34:2022-6

[29]

Alameda LT,Metzger ZP,Schaak RE.Topochemical deintercalation of Al from MoAlB: stepwise etching pathway, layered intergrowth structures, and two-dimensional MBene.J Am Chem Soc2018;140:8833-40

[30]

Ma F,Wu W,Yang SA.Half-auxeticity and anisotropic transport in Pd decorated two-dimensional boron sheets.Nano Lett2021;21:2356-62

[31]

Gao Z,Wu W.Monolayer RhB4: half-auxeticity and almost ideal spin-orbit Dirac point semimetal.Phys Rev B2021;104:245423

[32]

Jiao Y,Zhang X.A perfect match between borophene and aluminium in the AlB3 heterostructure with covalent Al-B bonds, multiple Dirac points and a high Fermi velocity.Chem Sci2022;13:1016-22 PMCID:PMC8790795

[33]

Gao Z,Wu H.Two-dimensional ruthenium boride: a Dirac nodal loop quantum electrocatalyst for efficient hydrogen evolution reaction.J Mater Chem A2023;11:3717-24

[34]

Xiao Y,Guo Z.Functionalized Mo2B2 MBenes: promising anchoring and electrocatalysis materials for lithium-sulfur battery.Appl Surf Sci2021;566:150634

[35]

Zhou S,Pei W,Zhao J.MXene and MBene as efficient catalysts for energy conversion: roles of surface, edge and interface.J Phys Energy2021;3:012002

[36]

Zhou J,Halim J.Boridene: two-dimensional Mo4/3B2-x with ordered metal vacancies obtained by chemical exfoliation.Science2021;373:801-5

[37]

Kresse G.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys Rev B Condens Matter1996;54:11169-86

[38]

Blöchl PE.Projector augmented-wave method.Phys Rev B Condens Matter1994;50:17953-79

[39]

Perdew JP,Ernzerhof M.Generalized gradient approximation made simple.Phys Rev Lett1996;77:3865-8

[40]

Togo A,Tanaka I.First-principles calculations of the ferroelastic transition between rutile-type and CaCl2 -type SiO2 at high pressures.Phys Rev B2008;78:134106

[41]

Martyna GJ,Tuckerman M.Nosé-Hoover chains: the canonical ensemble via continuous dynamics.J Chem Phys1992;97:2635-43

[42]

Noerskov JK,Logadottir A.Trends in the exchange current for hydrogen evolution.ChemInform2005;36:chin.200524023

[43]

Conway BE.The adsorption of hydrogen and the mechanism of the electrolytic hydrogen evolution reaction.Naturwissenschaften1956;43:446

[44]

Parsons R.The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen.Trans Faraday Soc1958;54:1053

[45]

Schwartz J,Ogletree DF.Effects of low-energy electron irradiation on formation of nitrogen-vacancy centers in single-crystal diamond.New J Phys2012;14:043024

[46]

Tong B,Deng Z,Klamchuen A.Surface oxygen vacancy defect engineering of p-CuAlO2 via Ar&H2 plasma treatment for enhancing VOCs sensing performances.Chem Commun2019;55:11691-4

[47]

Lin Z,Kahn E.Defect engineering of two-dimensional transition metal dichalcogenides.2D Mater2016;3:022002

[48]

Wu H,Ma F.Surface functionalization of two-dimensional boridene family: enhanced stability, tunable electronic property, and high catalytic activity.Appl Surf Sci2022;602:154374

[49]

Zhang H,Hou J,Chen Z.Dirac state in the FeB2 monolayer with graphene-like boron sheet.Nano Lett2016;16:6124-9

[50]

Tang C,Sanvito S.Prediction of room-temperature ferromagnetism and large perpendicular magnetic anisotropy in a planar hypercoordinate FeB3 monolayer.Nanoscale Horiz2021;6:43-8

[51]

Zhang H,Hou J,Chen Z.FeB6 monolayers: the graphene-like material with hypercoordinate transition metal.J Am Chem Soc2016;138:5644-51

[52]

Cahangirov S,Aktürk E,Ciraci S.Two- and one-dimensional honeycomb structures of silicon and germanium.Phys Rev Lett2009;102:236804

[53]

Molina-sánchez A.Phonons in single-layer and few-layer MoS2 and WS2.Phys Rev B2011;84:155413

[54]

Yang LM,Popov IA.Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding.J Am Chem Soc2015;137:2757-62

[55]

Sun Y,Wu X.Room-temperature ferromagnetism in two-dimensional Fe2Si nanosheet with enhanced spin-polarization ratio.Nano Lett2017;17:2771-7

[56]

Wu X,Zhao Y,Yang J.Two-dimensional boron monolayer sheets.ACS Nano2012;6:7443-53

[57]

Wu Z,Xiang H,Liu X.Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles.Phys Rev B2007;76:054115

[58]

Wang L,Zou X.Electro-mechanical anisotropy of phosphorene.Nanoscale2015;7:9746-51

[59]

Wang Y,Li Y.Semi-metallic Be5C2 monolayer global minimum with quasi-planar pentacoordinate carbons and negative Poisson's ratio.Nat Commun2016;7:11488 PMCID:PMC4857406

[60]

Bertolazzi S,Kis A.Stretching and breaking of ultrathin MoS2.ACS Nano2011;5:9703-9

[61]

Li J,Shenoy VB.Bonding charge density and ultimate strength of monolayer transition metal dichalcogenides.J Phys Chem C2013;117:15842-8

[62]

Mannix AJ,Kiraly B.Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs.Science2015;350:1513-6 PMCID:PMC4922135

[63]

Gao G,Du A.2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction.ACS Catal2017;7:494-500

[64]

Volmer F,Faria Junior PE.Twist angle dependent interlayer transfer of valley polarization from excitons to free charge carriers in WSe2/MoSe2 heterobilayers.npj 2D Mater Appl2023;7:58

[65]

Kaneti YV,Xu X,Yamauchi Y.Borophene: two-dimensional boron monolayer: synthesis, properties, and potential applications.Chem Rev2022;122:1000-51

[66]

Zhou S,Pei W,Zhao J.Heterostructures of MXenes and N-doped graphene as highly active bifunctional electrocatalysts.Nanoscale2018;10:10876-83

[67]

Conley HJ,Ziegler JI,Pantelides ST.Bandgap engineering of strained monolayer and bilayer MoS2.Nano Lett2013;13:3626-30

[68]

Xu X,Kong D,Zhi L.Strain engineering of two-dimensional materials for advanced electrocatalysts.Mater Today Nano2021;14:100111

AI Summary AI Mindmap
PDF

43

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/