Integrating Cu/CuxO ternary nanocomposites with multi-walled carbon nanotubes enabling a high-performance nonenzymatic amperometric glucose sensor

Weiyan Xi , Yupeng Zhang , Zhijia Zhang , Yu Chen , Xuanyuan Huang , Hongwei Mou , Zhaoxue Deng , Zhen Li , Xiaoxue Xu , Wei Zheng

Microstructures ›› 2024, Vol. 4 ›› Issue (3) : 2024028

PDF
Microstructures ›› 2024, Vol. 4 ›› Issue (3) :2024028 DOI: 10.20517/microstructures.2023.79
Research Article

Integrating Cu/CuxO ternary nanocomposites with multi-walled carbon nanotubes enabling a high-performance nonenzymatic amperometric glucose sensor

Author information +
History +
PDF

Abstract

We developed a new nonenzymatic amperometric glucose sensor by integrating a ternary nanocomposite, Cu/Cu2O/CuO (Cu/CuxO), with multi-wall carbon nanotubes (Cu/CuxO@MWCNTs) as the electrocatalyst. The Cu/CuxO@MWCNTs nanocomposite is prepared via an electroless plating process followed by thermal treatment. The constructed nanocomposites are systematically characterized with a transmission electron microscope, an X-ray diffractometer, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy, respectively. The Cu/CuxO@MWCNTs nanocomposites-modified glassy carbon electrodes exhibit high electrocatalytic activity toward glucose electrooxidation under alkaline conditions. The efficient electrocatalytic activity of Cu/CuxO@MWCNTs for glucose electrooxidation is utilized for glucose detection using Cu/CuxO@MWCNTs-modified glassy carbon electrodes. The Cu/CuxO@MWCNTs-modified electrode displays an excellent sensing performance within a wide analyte concentration from 0.005-6,000 M (low detection limit is calculated to be 0.003 μM) with superior stability, selectivity, repeatability, and reproductivity. This as-prepared electrochemical sensor is successfully applied to selective glucose detection with satisfactory results.

Keywords

Electrocatalyst / Cu/CuxO ternary nanocomposites / electrochemical / nonenzymatic sensor / amperometric detection

Cite this article

Download citation ▾
Weiyan Xi, Yupeng Zhang, Zhijia Zhang, Yu Chen, Xuanyuan Huang, Hongwei Mou, Zhaoxue Deng, Zhen Li, Xiaoxue Xu, Wei Zheng. Integrating Cu/CuxO ternary nanocomposites with multi-walled carbon nanotubes enabling a high-performance nonenzymatic amperometric glucose sensor. Microstructures, 2024, 4(3): 2024028 DOI:10.20517/microstructures.2023.79

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Golsanamlou Z,Soleymani J.Applications of advanced materials for non-enzymatic glucose monitoring: from invasive to the wearable device.Crit Rev Anal Chem2023;53:1116-31

[2]

Cho NH,Karuranga S.IDF diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045.Diabetes Res Clin Pract2018;138:271-81

[3]

Shen L,Chen Z.Reusable electrochemical non-enzymatic glucose sensors based on Au-inlaid nanocages.Nano Res2022;15:6490-9

[4]

Bollella P.Enzyme-based amperometric biosensors: 60 years later … Quo Vadis?.Anal Chim Acta2022;1234:340517

[5]

Clark LC Jr.Electrode systems for continuous monitoring in cardiovascular surgery.Ann N Y Acad Sci1962;102:29-45

[6]

Updike SJ.The enzyme electrode.Nature1967;214:986-8

[7]

Karyakin AA.Glucose biosensors for clinical and personal use.Electrochem Commun2021;125:106973

[8]

Vashist SK.Non-invasive glucose monitoring technology in diabetes management: a review.Anal Chim Acta2012;750:16-27

[9]

Sun Y,Ma J.Rational design of ZIF-8 for constructing luminescent biosensors with glucose oxidase and AIE-type gold nanoclusters.Anal Chem2022;94:3408-17

[10]

Kucherenko IS,Kucherenko DY,Dzyadevych SV.Advances in nanomaterial application in enzyme-based electrochemical biosensors: a review.Nanoscale Adv2019;1:4560-77 PMCID:PMC9417062

[11]

Du Y,Liu P,Ge R.Electrospun nanofiber-based glucose sensors for glucose detection.Front Chem2022;10:944428 PMCID:PMC9403008

[12]

Morshed J,Hossain MM,Tsujimura S.Disposable electrochemical glucose sensor based on water-soluble quinone-based mediators with flavin adenine dinucleotide-dependent glucose dehydrogenase.Biosens Bioelectron2021;189:113357

[13]

Tutel Y,Tunca S.Nanometer-thick Mn:NiO and Co:NiO films for high performance nonenzymatic biosensors.ACS Appl Nano Mater2021;4:13871-83

[14]

Chao D,Dong Q,Qi D.Ultrastable and ultrasensitive pH-switchable carbon dots with high quantum yield for water quality identification, glucose detection, and two starch-based solid-state fluorescence materials.Nano Res2020;13:3012-8

[15]

Feng T,Manaye Kabtamu D,Li F.Cu2O nanowires with exposed {111} facet for nonenzymatic detection of glucose in complex biological fluids.Chem Eng J2022;429:132267

[16]

Zhou Y,Yu F.A metal-organic framework based on a nickel bis(dithiolene) connector: synthesis, crystal structure, and application as an electrochemical glucose sensor.J Am Chem Soc2020;142:20313-7

[17]

Cohen R,Mukha D.Oxygen insensitive amperometric glucose biosensor based on FAD dependent glucose dehydrogenase co-entrapped with DCPIP or DCNQ in a polydopamine layer.Electrochim Acta2021;367:137477

[18]

Dong L,Zhang X,Wu Q.In-situ synthesis of Pt nanoparticles/reduced graphene oxide/cellulose nanohybrid for nonenzymatic glucose sensing.Carbohydr Polym2023;303:120463

[19]

Ghanam A,Mohammadi H,Sabac A.A membrane-less glucose/O2 non-enzymatic fuel cell based on bimetallic Pd-Au nanostructure anode and air-breathing cathode: towards micro-power applications at neutral pH.Biosens Bioelectron2022;210:114335

[20]

Wang Y,Xue R.Highly stable, stretchable, and transparent electrodes based on dual-headed Ag@Au core-sheath nanomatchsticks for non-enzymatic glucose biosensor.Nano Res2023;16:1558-67

[21]

Edet HO,Godwin UC,Agwamba EC.Single-metal (Cu, Ag, Au) encapsulated gallium nitride nanotube (GaNNT) as glucose nonenzymatic nanosensors for monitoring diabetes: perspective from DFT, visual study, and MD simulation.J Mol Liq2023;384:122209

[22]

Dai Z,Bao X.Facile non-enzymatic electrochemical sensing for glucose based on Cu2O-BSA nanoparticles modified GCE.Sensors2019;19:2824 PMCID:PMC6631518

[23]

Chen J,Xiao Q.Glucose biosensors based on pinecone-shaped Au and Ni nanoparticle composite microelectrodes.ACS Appl Nano Mater2022;5:13319-31

[24]

Meng A,Zhang Y.A free-standing flexible sensor MnO2-Co/rGO-CNT for effective electrochemical hydrogen peroxide sensing and real-time cancer biomarker assaying.Ceram Int2023;49:2440-50

[25]

Hussain MH,Sanira Putri MK,Abu Bakar NF.Advances on ultra-sensitive electrospun nanostructured electrochemical and colorimetric sensors for diabetes mellitus detection.Nano Mater Sci2021;3:321-43

[26]

Alanazi N,Muthuramamoorthy M.Cu2O/MXene/rGO ternary nanocomposites as sensing electrodes for nonenzymatic glucose sensors.ACS Appl Nano Mater2023;6:12271-81

[27]

Yang M,Lee KG,Lee SJ.Hierarchical porous microspheres of the Co3O4@graphene with enhanced electrocatalytic performance for electrochemical biosensors.Biosens Bioelectron2017;89:612-9

[28]

Chavez-Urbiola IR,Willars-Rodriguez FJ.Glucose biosensor based on a flexible Au/ZnO film to enhance the glucose oxidase catalytic response.J Electroanal Chem2022;926:116941

[29]

Zhang X,Ji R,Wang G.Nonenzymatic glucose sensor based on Cu-Cu2S nanocomposite electrode.Electrochem Commun2012;24:53-6

[30]

Yang Y,Zheng X.Anion-exchange membrane water electrolyzers and fuel cells.Chem Soc Rev2022;51:9620-93

[31]

Yu Z,Xu Z,Lv J.Wearable noninvasive glucose sensor based on CuxO NFs/Cu NPs Nanocomposites.Sensors2023;23:695 PMCID:PMC9865846

[32]

Fan L,Patel V,Selvaganapathy PR.Solid-state, reagent-free and one-step laser-induced synthesis of graphene-supported metal nanocomposites from metal leaves and application to glucose sensing.Anal Chim Acta2023;1264:341248

[33]

Sudharsan S,Kumar S,Ramanujam K.Copper oxide anchored polyaniline modified glassy carbon electrode: a new sensor platform for the amperometric determination of chlorpyrifos.Electrochim Acta2023;471:143305

[34]

Zhu T,Luo L.Facile fabrication of NiO-decorated double-layer single-walled carbon nanotube buckypaper for glucose detection.ACS Appl Mater Interfaces2019;11:10856-61

[35]

Deng Z,Mu H.High selective property of gelatin/MWCNTs functionalized carbon fiber microelectrode: toward real-time monitoring of ascorbate.J Electroanal Chem2022;914:116315

[36]

Zhang XX,Xu R.Oxidation resistance of multi-walled carbon nanotubes purified with sulfuric and nitric acids.J Mater Sci2007;42:8377-80

[37]

Hsu HL,Sung Y,Yang SR.The synthesis, characterization of oxidized multi-walled carbon nanotubes, and application to surface acoustic wave quartz crystal gas sensor.Mater Chem Phys2008;109:148-55

[38]

Liu CK,Shih HC.Application of plasma modified multi-wall carbon nanotubes to ethanol vapor detection.Sens Actuat B Chem2010;150:641-8

[39]

Hu X,Yang M.High-yield preparation of ultrahigh-hydrophilicity MWCNTs by highly controllable oxidation with concentrated HNO3/HClO4 mixture.Appl Surf Sci2023;626:157200

[40]

Liu X,Huang Z.Electrospun multiwall nanotubes-loaded polyethylene glycol/polyacrylonitrile composite form-stable nanofibers for thermal energy storage.J Energy Stor2023;66:107458

[41]

Jolley JG,Hankins MR,Wichlacz PL.Auger electron and X-ray photoelectron spectroscopic study of the biocorrosion of copper by alginic acid polysaccharide.Appl Surf Sci1989;37:469-80

[42]

Jiang J,Han J,Chen JS.Self-supported sheets-on-wire CuO@Ni(OH)2/Zn(OH)2 nanoarrays for high-performance flexible quasi-solid-state supercapacitor.Processes2021;9:680

[43]

Santra AK.Surface alloy formation in Pd/Ag, Cu/Au and Ni/Au bimetallic overlayers.Appl Surf Sci1995;84:347-50

[44]

Parmigiani F.The Cu2p X-ray photoelectron core-lines in copper oxide based high temperature superconductors.J Electron Spectrosc Relat Phenom1994;66:223-39

[45]

Liu S,Hui KN.Flower-like copper cobaltite nanosheets on graphite paper as high-performance supercapacitor electrodes and enzymeless glucose sensors.ACS Appl Mater Interfaces2016;8:3258-67

[46]

Le WZ.Preparation of nano-copper oxide modified glassy carbon electrode by a novel film plating/potential cycling method and its characterization.Sens Actuat B Chem2009;141:147-53

[47]

Paixão TRLC,Bertotti M.Amperometric determination of ethanol in beverages at copper electrodes in alkaline medium.Anal Chim Acta2002;472:123-31

[48]

Hou L,Bi S,Lu Y.Ultrasensitive and highly selective sandpaper-supported copper framework for non-enzymatic glucose sensor.Electrochim Acta2017;248:281-91

[49]

Marioli JM.Electrochemical characterization of carbohydrate oxidation at copper electrodes.Electrochim Acta1992;37:1187-97

[50]

Zhang Y,Manuzzi D.Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires.Biosens Bioelectron2012;31:426-32

[51]

Zohaa ,Hassan M.An electrochemical sensor based on copper oxide nanoparticles loaded on a mesoporous MCM-41 for non-enzymatic detection of glucose.Ceram Int2024;50:12614-20

[52]

Imanzadeh H,Nozari-Asbemarz M.A novel NiO/C@rGO nanocomposite derived from Ni(gallate): a non-enzymatic electrochemical glucose sensor.Microchem J2024;199:110106

[53]

Liang H,Xiao Y,Wang L.Ni/NiO/carbon derived from covalent organic frameworks for enzymatic-free electrochemical glucose sensor.Ceram Int2024;50:977-84

[54]

Myndrul V,Babayevska N.MXene nanoflakes decorating ZnO tetrapods for enhanced performance of skin-attachable stretchable enzymatic electrochemical glucose sensor.Biosens Bioelectron2022;207:114141

[55]

Elancheziyan M,Eswaran M.Eco-friendly fabrication of nonenzymatic electrochemical sensor based on cobalt/polymelamine/nitrogen-doped graphitic-porous carbon nanohybrid material for glucose monitoring in human blood.Environ Res2023;223:115403

[56]

Kuang D,Liu J,Wang C.Flexible MWCNT/silk fibroin film decorated with Pt NPs for electrochemical glucose sensors.Microchem J2023;191:108760

[57]

Fall B,Hémadi M.Highly efficient non-enzymatic electrochemical glucose sensor based on carbon nanotubes functionalized by molybdenum disulfide and decorated with nickel nanoparticles (GCE/CNT/MoS2/NiNPs).Sens Actuat Rep2023;5:100136

[58]

Larasati LD,Oskay KO.Direct co-deposition of binder-free Cu-biochar-based nonenzymatic disposable sensing element for electrochemical glucose detection.Surf Interfaces2023;42:103355

[59]

Wang H,Xu T.An integrated nanoflower-like MoS2@CuCo2O4 heterostructure for boosting electrochemical glucose sensing in beverage.Food Chem2022;396:133630

AI Summary AI Mindmap
PDF

42

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/