Direct Z-scheme photocatalytic systems based on vdW heterostructures for water splitting and CO2 reduction: fundamentals and recent advances

Kaiyue Hu , Jiayu Tian , Zhifu Zhou , Daming Zhao , Xiangjiu Guan

Microstructures ›› 2024, Vol. 4 ›› Issue (2) : 2024021

PDF
Microstructures ›› 2024, Vol. 4 ›› Issue (2) :2024021 DOI: 10.20517/microstructures.2023.76
Review

Direct Z-scheme photocatalytic systems based on vdW heterostructures for water splitting and CO2 reduction: fundamentals and recent advances

Author information +
History +
PDF

Abstract

Photocatalytic water splitting and CO2 reduction are conducive to alleviating the increasingly serious environmental problems and ever-tightening energy problems. Among various modification strategies, constructing Z-scheme heterostructures and direct Z-scheme heterostructures, in particular, by mimicking natural photosynthesis, has been widely researched for the effective separation of photogenerated electrons and holes with strong redox ability. However, a low lattice matching degree of different semiconductors often results in serious crystal defects in the composite. Fortunately, van der Waals (vdW) heterostructures constructed through interlayer weak vdW interactions provide a remedy, which not only can ensure the high quality of Z-scheme heterostructures but also preserve the original properties of individual components and induces new properties at the heterogeneous interfaces. Herein, we introduce the fundamentals of direct Z-scheme vdW heterostructure and review the last five-year progress of direct Z-scheme vdW heterostructures for photocatalytic water splitting and CO2 reduction, highlighting the characteristics and fundamental modification principles of different heterostructures, aiming to provide informative principles for the design of advanced heterostructure photocatalysts for solar energy conversion.

Keywords

Water splitting / CO2 reduction / photocatalysis / direct Z-scheme heterostructure / van der Waals heterostructure

Cite this article

Download citation ▾
Kaiyue Hu, Jiayu Tian, Zhifu Zhou, Daming Zhao, Xiangjiu Guan. Direct Z-scheme photocatalytic systems based on vdW heterostructures for water splitting and CO2 reduction: fundamentals and recent advances. Microstructures, 2024, 4(2): 2024021 DOI:10.20517/microstructures.2023.76

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Energy Institute. Statistical Review of World Energy. 72nd ed. London: Energy Institute; 2023. p. 3.

[2]

Acar C,Naterer GF.Review of photocatalytic water-splitting methods for sustainable hydrogen production.Int J Energy Res2016;40:1449-73

[3]

Fujishima A.Electrochemical photolysis of water at a semiconductor electrode.Nature1972;238:37-8

[4]

Gao X,Xu ZJ,Fisher AC.An electrochemical method for monitoring the acidity of water for fuel cell and environmental applications.Energy Tech2018;6:94-9

[5]

Mao M,Li Y.Hydrogen evolution from photocatalytic water splitting by LaMnO3 modified with amorphous CoSx.J Mater Sci2020;55:3521-37

[6]

Liu L,Chen F.Cooperation of oxygen vacancies and 2D ultrathin structure promoting CO2 photoreduction performance of Bi4Ti3O12.Sci Bull2020;65:934-43

[7]

Moradi M,Larimi A.Pt nanoparticles decorated Bi-doped TiO2 as an efficient photocatalyst for CO2 photo-reduction into CH4.Solar Energy2020;211:100-10

[8]

Tahir M.2D/2D/2D O-C3N4/Bt/Ti3C2Tx heterojunction with novel MXene/clay multi-electron mediator for stimulating photo-induced CO2 reforming to CO and CH4.Chem Eng J2020;400:125868

[9]

Jiang Z,Shangguan W.Recent advances of hydrogen production through particulate semiconductor photocatalytic overall water splitting.Front Energy2022;16:49-63

[10]

Chen M,Zhao W.In situ growth of metallic 1T-MoS2 on TiO2 nanotubes with improved photocatalytic performance.ACS Omega2021;6:12787-93

[11]

Li Y,Zhou B.Ga(X)N/Si nanoarchitecture: An emerging semiconductor platform for sunlight-powered water splitting toward hydrogen.Front Energy2024;18:56-79

[12]

Wang Z,Domen K.Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting.Chem Soc Rev2019;48:2109-25

[13]

Li H,Luo H,Zhu W.Recent developments in metal nanocluster-based catalysts for improving photocatalytic CO2 reduction performance.Microstructures2023;3:2023024.

[14]

Wang J.A critical review on graphitic carbon nitride (g-C3N4)-based materials: preparation, modification and environmental application.Coordin Chem Rev2022;453:214338

[15]

Wang J,Zhou R.A review: synthesis, modification and photocatalytic applications of ZnIn2S4.J Mater Sci Technol2021;78:1-19

[16]

Yi J,Song Y,Ajayan PM.Emerging surface strategies on graphitic carbon nitride for solar driven water splitting.Chem Eng J2020;382:122812

[17]

Luo B,Jing D.State-of-the-art progress in overall water splitting of carbon nitride based photocatalysts.Front Energy2021;15:600-20

[18]

Zhao D,Shen S.Design of polymeric carbon nitride-based heterojunctions for photocatalytic water splitting: a review.Environ Chem Lett2022;20:3505-23

[19]

Chen M,Zhang J,Chen Z.Preparation of a hybrid TiO2 and 1T/2H-MoS2 photocatalyst for the degradation of tetracycline hydrochloride.ACS Omega2023;8:15458-66

[20]

Low J,Cheng B,Al-ghamdi AA.A review of direct Z-scheme photocatalysts.Small Methods2017;1:1700080

[21]

Das S,Ningthoukhangjam P,Nair RG.A critical review on prospects and challenges of metal-oxide embedded g-C3N4-based direct Z-scheme photocatalysts for water splitting and environmental remediation.Appl Surf Sci Adv2022;11:100273

[22]

Belessiotis GV.Plasmonic silver (Ag)-based photocatalysts for H2 production and CO2 conversion: review, analysis and perspectives.Renew En2022;195:497-515

[23]

Bard AJ.Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors.J Photoch1979;10:59-75

[24]

Wang X,Chen ZG.Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures.Chem Commun2009;23:3452-4

[25]

Xu Q,Yu J,Al-ghamdi AA.Direct Z-scheme photocatalysts: principles, synthesis, and applications.Mater Today2018;21:1042-63

[26]

Fu J,Low J,Yu J.Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst.Appl Catal B Environ2019;243:556-65

[27]

Chen W,Huang T.A novel yet simple strategy to fabricate visible light responsive C,N-TiO2/g-C3N4 heterostructures with significantly enhanced photocatalytic hydrogen generation.RSC Adv2015;5:101214-20

[28]

Low J,Tong T,Yu J.In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2 /CdS composite film photocatalyst.Adv Mater2019;31:e1807920

[29]

Koma A,Miyajima T.Fabrication and characterization of heterostructures with subnanometer thickness.Microelectron Eng1984;2:129-36

[30]

Lou P.GeC/GaN vdW heterojunctions: a promising photocatalyst for overall water splitting and solar energy conversion.ACS Appl Mater Interfaces2020;12:14289-97

[31]

Xu Y,Ge T.Realizing efficient CO2 photoreduction in Bi3O4Cl: constructing van der Waals heterostructure with g-C3N4.Chem Eng J2021;409:128178

[32]

Rahimi K.Band alignment tuning of heptazine-g-C3N4/g-ZnO vdW heterostructure as a promising water-splitting photocatalyst.Phys Chem Chem Phys2021;23:20675-85

[33]

Wenna H,Minglei J.A direct Z-scheme g-C6N6/InP van der Waals heterostructure: a promising photocatalyst for high-efficiency overall water splitting.J Phys D: Appl Phys2022;55:264001

[34]

Zhang Y,Yan Z,Ni L.PtS2/g-C3N4 van der Waals heterostructure: a direct Z-scheme photocatalyst with high optical absorption, solar-to-hydrogen efficiency and catalytic activity.Int J Hydrogen2023;48:14659-69

[35]

Yang J,Wang Z.The direct Z-scheme g-C6N6/WTe2 van der Waals heterojunction as photocatalyst over water splitting in the visible light: designing strategy from first principles.J Photoch Photobio A2023;435:114263

[36]

Zhang R,Zheng Q,Zhao J.Direct Z-scheme water splitting photocatalyst based on two-dimensional van der waals heterostructures.J Phys Chem Lett2018;9:5419-24

[37]

Wang J,Song X,Zhang Z.Insights into photoinduced carrier dynamics and overall water splitting of Z-scheme van der waals heterostructures with intrinsic electric polarization.J Phys Chem Lett2023;14:798-808

[38]

Wang Z,Li J,Zhou G.2D van der Waals heterostructures of graphitic BCN as direct Z-scheme photocatalysts for overall water splitting: the role of polar π-conjugated moieties.Phys Chem Chem Phys2020;22:23735-42

[39]

Dong H,Zhang P.Metal-free Z-scheme 2D/2D VdW heterojunction for high-efficiency and durable photocatalytic H2 production.Chem Eng J2020;395:125150

[40]

Meng J,Wang J,Yang J.C7N6/Sc2CCl2 weak van der waals heterostructure: a promising visible-light-driven Z-scheme water splitting photocatalyst with interface ultrafast carrier recombination.J Phys Chem Lett2022;13:1473-9

[41]

Wang B,Wang P.Bilayer MoSe2/HfS2 nanocomposite as a potential visible-light-driven Z-scheme photocatalyst.Nanomaterials2019;9:1706 PMCID:PMC6955844

[42]

Zheng X,Li Y,Luo S.Direct Z-scheme MoSe2 decorating TiO2 nanotube arrays photocatalyst for water decontamination.Electrochim Acta2019;298:663-9

[43]

Meng A,Zhong B,Cheng B.Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity.Appl Surf Sci2017;422:518-27

[44]

Ren K,Sun M,Cheng Y.A direct Z-scheme PtS2/arsenene van der Waals heterostructure with high photocatalytic water splitting efficiency.Nanoscale2020;12:17281-9

[45]

Zhang Q,Zheng R,An Z.First-principles calculations of two-dimensional CdO/HfS2 van der Waals heterostructure: direct Z-scheme photocatalytic water splitting.Front Chem2022;10:879402 PMCID:PMC9021922

[46]

Li H,Huang X.Two-dimensional C3N/WS2 vdW heterojunction for direct Z-scheme photocatalytic overall water splitting.Int J Hydrogen2023;48:2186-99

[47]

Singh A,Bhattacharya S.MoS2 and Janus (MoSSe) based 2D van der Waals heterostructures: emerging direct Z-scheme photocatalysts.Nanoscale Adv2021;3:2837-45 PMCID:PMC9417246

[48]

Wang B,Wang P.Bilayer MoTe2/XS2 (X = Hf, Sn, Zr) heterostructures with efficient carrier separation and light absorption for photocatalytic water splitting into hydrogen.Appl Surf Sci2021;544:148842

[49]

Cao M,Wang Z.DFT investigation on direct Z-scheme photocatalyst for overall water splitting: MoTe2/BAs van der Waals heterostructure.Appl Surf Sci2021;551:149364

[50]

Zhu XT,Cao Y,Sheng W.Direct Z-scheme arsenene/HfS2 van der Waals heterojunction for overall photocatalytic water splitting: first-principles study.Appl Surf Sci2022;574:151650

[51]

Luo Q,Sun X,Feng Z.GaN/BS van der Waals heterostructure: a direct Z-scheme photocatalyst for overall water splitting.Appl Surf Sci2023;609:155400

[52]

Liu J,Lv L.Rational design direct Z-scheme β-GeSe/HfS2 heterostructure by interfacial engineering: efficient photocatalyst for overall water splitting in the wide solar spectrum.Appl Surf Sci2022;589:153025

[53]

Cao J,Zhao S,Cui J.Mechanism of photocatalytic water splitting of 2D WSeTe/XS2 (X = Hf, Sn, Zr) van der Waals heterojunctions under the interaction of vertical intrinsic electric and built-in electric field.Appl Surf Sci2022;599:154012

[54]

Zhang Y,Liu J.Internal electric field enhanced photoelectrochemical water splitting in direct Z-scheme GeC/HfS2 heterostructure: a first-principles study.Appl Phys Lett2023;122:043902

[55]

Christopher ES. MXenes: a tunable family of 2D carbides and nitrides. Available from: https://www.sigmaaldrich.com/US/en/technical-documents/technical-article/materials-science-and-engineering/organic-electronics/mxenes [Last accessed on 7 Apr 2024]

[56]

Lu C,Zou Y.Direct Z-scheme SnSe2/SnSe heterostructure passivated by Al2O3 for highly stable and sensitive photoelectrochemical photodetectors.ACS Appl Mater Interfaces2023;15:6156-68

[57]

Fu CF,Yang J.A rationally designed two-dimensional MoSe2/Ti2CO2 heterojunction for photocatalytic overall water splitting: simultaneously suppressing electron-hole recombination and photocorrosion.Chem Sci2021;12:2863-9 PMCID:PMC8179368

[58]

Liu X,Zhang X.Enhanced solar-to-hydrogen efficiency for photocatalytic water splitting based on a polarized heterostructure: the role of intrinsic dipoles in heterostructures.J Mater Chem A2021;9:14515-23

[59]

Ju L,Kou L.Polarization boosted catalysis: progress and outlook.Microstructures2022;2:2022008.

[60]

Jalil A,Kanwal A.Prediction of direct Z-scheme H and H-phase of MoSi2N4/MoSX (X = S, Se) van der Waals heterostructures: a promising candidate for photocatalysis.Chem Eng J2023;470:144239

[61]

Shahrokhi M,Le Bahers T.2D MoO3-xSx/MoS2 van der Waals assembly: a tunable heterojunction with attractive properties for photocatalysis.ACS Appl Mater Interfaces2021;13:36465-74

[62]

Zeng H,Cheng AQ,He Z.Tuning electronic and optical properties of arsenene/C3N van der Waals heterostructure by vertical strain and external electric field.Nanotechnology2018;29:075201

[63]

Zhang S,Li Y,Zeng H.Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions.Angewandte Chemie2015;127:3155-8

[64]

Kamal C.Arsenene: two-dimensional buckled and puckered honeycomb arsenic systems.Phys Rev B2015;91:085423

[65]

Lu Q,Xu T,Gong W.Highly efficient photocatalytic water splitting in direct Z-scheme α -In2Se3/are van der Waals heterostructures.Surfaces Interfaces2023;36:102608

[66]

Fan Y,Li W.Direct Z-scheme photocatalytic CO2 conversion to solar fuels in a two-dimensional C2N/aza-CMP heterostructure.Appl Surf Sci2021;541:148630

[67]

Wang J,Cui J.Defective g-C3N4/covalent organic framework van der Waals heterojunction toward highly efficient S-scheme CO2 photoreduction.Appl Catal B Environ2022;301:120814

[68]

Bian J,Feng J.Energy platform for directed charge transfer in the cascade Z-scheme heterojunction: CO2 photoreduction without a cocatalyst.Angew Chem Int Ed2021;60:20906-14 PMCID:PMC8518548

[69]

He F,Cheng B,Ho W.2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity.Appl Catal B Environ2020;272:119006

[70]

Wang Z,Zhang L.S-Scheme 2D/2D Bi2MoO6/BiOI van der Waals heterojunction for CO2 photoreduction.Chinese J Catal2022;43:1657-66

AI Summary AI Mindmap
PDF

186

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/