Si(111) islands on β-phase Si(111)√3 × √3R30°-Bi

Paola De Padova , Mieczysław Jałochowski , Amanda Generosi , Carlo Ottaviani , Claudio Quaresima , Barbara Paci , Bruno Olivieri , Mariusz Krawiec

Microstructures ›› 2024, Vol. 4 ›› Issue (2) : 2024019

PDF
Microstructures ›› 2024, Vol. 4 ›› Issue (2) :2024019 DOI: 10.20517/microstructures.2023.74
Research Article

Si(111) islands on β-phase Si(111)√3 × √3R30°-Bi

Author information +
History +
PDF

Abstract

β-phase √3 × √3R30°-bismuth (Bi) on silicon (Si)(111)7 × 7 surface has been exploited as a template for growing Si films. Two-dimensional Si islands with √3 × √3 reconstruction, parallel to that of Si(111)√3 × √3R30°-Bi, have been resolved by means of scanning tunneling microscopy, grazing-incidence X-ray diffraction (XRD) and low electron energy diffraction. Auger electron spectroscopy and scanning tunneling spectroscopy gave interesting electronic features on two-dimensional Si islands, with the evidence of a reduced band gap to ~0.55 eV, related to the presence of the underneath Bi layer, and atomic structural properties typical of Si(111). These experimental findings fully confirm the recently reported calculation based on the first-principles density functional theory, on the prediction of Si(111) growth on top of β-phase √3 × √3R30°-Bi/Si(111)7 × 7 reconstruction, shedding new light on silicon structures.

Keywords

Materials science / 2D Si(111) island growth / AES / LEED / STM / STS / GIXRD

Cite this article

Download citation ▾
Paola De Padova, Mieczysław Jałochowski, Amanda Generosi, Carlo Ottaviani, Claudio Quaresima, Barbara Paci, Bruno Olivieri, Mariusz Krawiec. Si(111) islands on β-phase Si(111)√3 × √3R30°-Bi. Microstructures, 2024, 4(2): 2024019 DOI:10.20517/microstructures.2023.74

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mohan R.Green bismuth.Nat Chem2010;2:336

[2]

Takahashi T,Ishikawa T.Evidence for a trimer in the √3 × √3 -Bi structure on the Si(111) surface by X-ray diffraction under the nearly normal incidence condition.Surf Sci Lett1987;183:L302-12

[3]

Takahashi T,Ishikawa T.Surface structure analysis of Si(111)3×3-Bi by X-ray diffraction - Approach to the solution of the phase problem.Surf Sci Lett1987;191:L825-34

[4]

Park CY,Higashiyama K.Analysis of the atomic structure of the Si(111)√3×√3-Bi surface by X-ray photoelectron diffraction.Jpn J Appl Phys1987;26:L1335

[5]

Shioda R,Baski AA,Nogami J.Bi on Si(111): two phases of the √3 × √3 surface reconstruction.Phys Rev B1993;48:4895-8

[6]

Park C,Tomihiro Hashizume TH.Scanning tunneling microscopy of √3×√3-Bi reconstruction on the Si(111) surface.Jpn J Appl Phys1993;32:L290

[7]

Park C,Tomihiro Hashizume TH.Structure of the Bi/Si(111) surface by field-ion scanning tunneling microscopy.Jpn J Appl Phys1993;32:1416

[8]

Bakhtizin RZ,Hashizume T.Atomic structure of Bi on the Si(111) surface.J Vac Sci Technol B1994;12:2052-4

[9]

Roesler JM,Miller T.New experimental technique of photoelectron holography applied to Bi trimers on Si(111).Surf Sci1997;380:L485-90

[10]

Cheng C.Structure and stability of Bi layers on Si(111) and Ge(111) surfaces.Phys Rev B1997;56:10283-8

[11]

Roesler JM,Chiang TC.Photoelectron holography studies of Bi on Si(111).Surf Sci1998;417:L1143-7

[12]

Nakatani S,Kuwahara Y.Use of x-ray reflectivity for determining the Si(111)√3×√3-Bi surface structures.Phys Rev B1995;52:R8711-4

[13]

Miwa RH,Srivastava GP.Bi covered Si(111) surface revisited.J Phys Condens Matter2003;15:2441

[14]

Yaginuma S,Sadowski JT.Origin of flat morphology and high crystallinity of ultrathin bismuth films.Surf Sci2007;601:3593-600

[15]

Wan KJ,Ford WK.Initial growth of Bi films on a Si(111) substrate: two phases of √3 × √3 low-energy-electron-diffraction pattern and their geometric structures.Phys Rev B1991;44:3471-4

[16]

Wan KJ,Ford WK.Low-energy electron diffraction studies of Si(111)-($$ \sqrt{3} $$ × $$ \sqrt{3} $$)R30°-Bi system: observation and structural determination of two phases.Surf Sci1992;261:69-87

[17]

Woicik JC,Liu C.Structural determination of the Si(111) √3×√3-Bi surface by x-ray standing waves and scanning tunneling microscopy.Phys Rev B1994;50:12246-9

[18]

Kuzumaki T,Mizuno S,Tochihara H.Re-investigation of the Bi-induced Si(111)-($$ \sqrt{3} $$ × $$ \sqrt{3} $$) surfaces by low-energy electron diffraction.Surf Sci2010;604:1044-8

[19]

Berntsen MH,Tjernberg O.Reinvestigation of the giant Rashba-split states on Bi-covered Si(111).Phys Rev B2018;97:125148

[20]

Chi L,Singh CV.Bias dependence and defect analysis of Bi on Si(111) $$ \sqrt{3} $$ × $$ \sqrt{3} $$ β-phase.Phys Rev B2021;103:075405

[21]

Hsieh SC,Chen HD,Chuang FC.Extended α-phase Bi atomic layer on Si(111) fabricated by thermal desorption.Appl Surf Sci2020;504:144103

[22]

Bychkov YA.Properties of 2D electron gas with lifted spectral degeneracy.JETP Lett1984;39:78-81Available from: http://jetpletters.ru/ps/1264/article_19121.pdf. [Last accessed on 7 Apr 2024]

[23]

LaShell S,Jensen E.Spin splitting of an Au(111) surface state band observed with angle resolved photoelectron spectroscopy.Phys Rev Lett1996;77:3419-22

[24]

Koroteev YM,Gayone JE.Strong spin-orbit splitting on Bi surfaces.Phys Rev Lett2004;93:046403

[25]

Ast CR,Ernst A.Giant spin splitting through surface alloying.Phys Rev Lett2007;98:186807

[26]

Reis F,Dudy L.Bismuthene on a SiC substrate: a candidate for a high-temperature quantum spin Hall material.Science2017;357:287-90

[27]

Vogt P,Quaresima C.Silicene: compelling experimental evidence for graphenelike two-dimensional silicon.Phys Rev Lett2012;108:155501

[28]

Stpniak-dybala A,Kopciuszyski M,Jałochowski M.Planar silicene: a new silicon allotrope epitaxially grown by segregation.Adv Funct Mater2019;29:1906053

[29]

De Padova P,Resta A.The quasiparticle band dispersion in epitaxial multilayer silicene.J Phys Condens Matter2013;25:382202

[30]

De Padova P,Resta A.Evidence of Dirac fermions in multilayer silicene.Appl Phys Lett2013;102:163106

[31]

Vogt P,Berthe M.Synthesis and electrical conductivity of multilayer silicene.Appl Phys Lett2014;104:021602

[32]

Grazianetti C,Tao L.Silicon nanosheets: crossover between multilayer silicene and diamond-like growth regime.ACS Nano2017;11:3376-82

[33]

De Padova P,Quaresima C.24 h stability of thick multilayer silicene in air.2D Mater2014;1:021003

[34]

De Padova P,Paci B.Multilayer silicene: clear evidence.2D Mater2016;3:031011

[35]

De Padova P,Zhuang J.Synthesis of multilayer silicene on Si(111)√3 × √3-Ag.J Phys Chem C2017;121:27182-90

[36]

De Padova P,Paci B.New findings on multilayer silicene on Si(111)√3×√3R30°-Ag template.Materials2019;12:2258 PMCID:PMC6678445

[37]

Garagnani D,Ottaviani C.Evidence of sp2-like hybridization of silicon valence orbitals in thin and thick Si grown on α-phase Si(111)√3 × √3R30°-Bi.Materials2022;15:1730 PMCID:PMC8911118

[38]

Berghaus T,Neddermeyer H.STM observation of a new reconstruction on narrow Si(111) terraces.Surf Sci1987;181:340-5

[39]

Fan WC,Huang H.Observation and structural determination of (√3×√3)R30° reconstruction of the Si(111) surface.Phys Rev Lett1989;62:1516-9

[40]

Xu YX,Xu LH,Wu SQ.Silicene adsorption on the bismuth-passivated Si(111)$$ \sqrt{3} $$ × $$ \sqrt{3} $$ surface: a first-principles study.Mater Chem Phys2018;216:8-13

[41]

Becker RS,McRae EG.Tunneling images of atomic steps on the Si(111)7 × 7 surface.Phys Rev Lett1985;55:2028-31

[42]

Mak KF,Hone J,Heinz TF.Atomically thin MoS2: a new direct-gap semiconductor.Phys Rev Lett2010;105:136805

AI Summary AI Mindmap
PDF

36

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/