Transition from isotropic positive to negative thermal expansion by local Zr6O8 node distortion in MOF-801

Rui Ma , Zhanning Liu , Liang Chen , Qiang Li , Kun Lin , Xin Chen , Jinxia Deng , Koji Ohara , Xianran Xing

Microstructures ›› 2024, Vol. 4 ›› Issue (2) : 2024023

PDF
Microstructures ›› 2024, Vol. 4 ›› Issue (2) :2024023 DOI: 10.20517/microstructures.2023.70
Research Article

Transition from isotropic positive to negative thermal expansion by local Zr6O8 node distortion in MOF-801

Author information +
History +
PDF

Abstract

The chemical designability and diversity of metal-organic frameworks (MOFs) endow them with plenty of anomalous properties, such as negative thermal expansion (NTE). Herein, we investigated the thermal expansion behaviors of the well-known MOF-801, which has been widely used in water adsorption and gas separation. The analyses of variable temperature powder X-ray diffraction and Rietveld refinements revealed a fascinating transition from positive thermal expansion to NTE. Further in situ Raman spectra and pair distribution function investigations shed light on the transition being attributed to the local Zr6O8 node distortion rather than a long-range phase transition. Our findings will enhance the comprehension of NTE and contribute to the effective utilization of MOF-801 over a broad temperature range.

Keywords

MOF-801 / negative thermal expansion (NTE) / pair distribution function (PDF) / local structure / Zr6O8 node distortion

Cite this article

Download citation ▾
Rui Ma, Zhanning Liu, Liang Chen, Qiang Li, Kun Lin, Xin Chen, Jinxia Deng, Koji Ohara, Xianran Xing. Transition from isotropic positive to negative thermal expansion by local Zr6O8 node distortion in MOF-801. Microstructures, 2024, 4(2): 2024023 DOI:10.20517/microstructures.2023.70

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li Q,Liu Z.Chemical diversity for tailoring negative thermal expansion.Chem Rev2022;122:8438-86

[2]

Takenaka K.Negative thermal expansion materials: technological key for control of thermal expansion.Sci Technol Adv Mater2012;13:013001 PMCID:PMC5090290

[3]

Chen J,Deng J.Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications.Chem Soc Rev2015;44:3522-67

[4]

Hu L,Fan L.Zero thermal expansion and ferromagnetism in cubic Sc1-xMxF3 (M = Ga, Fe) over a wide temperature range.J Am Chem Soc2014;136:13566-9

[5]

Song Y,Xu M.Negative thermal expansion in (Sc,Ti)Fe2 induced by an unconventional magnetovolume effect.Mater Horiz2020;7:275-81

[6]

Zhou H,Chen B.Low-melting metal bonded MM’X/In composite with largely enhanced mechanical property and anisotropic negative thermal expansion.Acta Mater2022;229:117830

[7]

Balestra SR,Hamad S,Ruiz-Salvador AR.Controlling thermal expansion: a metal-organic frameworks route.Chem Mater2016;28:8296-304 PMCID:PMC5295828

[8]

Zhang JP,Zhou DD,Chen XM.Controlling flexibility of metal-organic frameworks.Nat Sci Rev2018;5:907-19

[9]

Burtch NC,Heinen J.Negative thermal expansion design strategies in a diverse series of metal-organic frameworks.Adv Funct Mater2019;29:1904669

[10]

Schneider C,Ehrenreich MG.Tuning the negative thermal expansion behavior of the metal-organic framework Cu3BTC2 by retrofitting.J Am Chem Soc2019;141:10504-9

[11]

Dubbeldam D,Ellis DE.Exceptional negative thermal expansion in isoreticular metal-organic frameworks.Angew Chem Int Ed2007;46:4496-9

[12]

Wu Y,Halder GJ.Negative thermal expansion in the metal-organic framework material Cu3(1,3,5-benzenetricarboxylate)2.Angew Chem Int Ed2008;47:8929-32

[13]

Cliffe MJ,Murray CA,Goodwin AL.Defect-dependent colossal negative thermal expansion in UiO-66(Hf) metal-organic framework.Phys Chem Chem Phys2015;17:11586-92

[14]

Liu Z,Zhu H.3D negative thermal expansion in orthorhombic MIL-68(In).Chem Commun2018;54:5712-5

[15]

Chen Z,Liu J.Node distortion as a tunable mechanism for negative thermal expansion in metal-organic frameworks.J Am Chem Soc2023;145:268-76

[16]

Liu Z,Deng J,Xing X.Molecular packing-dependent thermal expansion behaviors in metal squarate frameworks.Chem Mater2020;32:2893-8

[17]

Liu Z,Xing C.Negative thermal expansion in the noncarboxylate based metal-organic framework Cd(trz)Cl.ACS Mater Lett2023;5:1911-5

[18]

Zhou W,Yildirim T,Walker ARH.Origin of the exceptional negative thermal expansion in metal-organic framework-5 Zn4O(1,4-benzenedicarboxylate)3.Phys Rev B2008;78:054114

[19]

Rimmer LH,Goodwin AL.Acoustic phonons and negative thermal expansion in MOF-5.Phys Chem Chem Phys2014;16:21144-52

[20]

Lock N,Christensen M.Elucidating negative thermal expansion in MOF-5.J Phys Chem C2010;114:16181-6

[21]

Goodwin AL,Kepert CJ.Guest-dependent negative thermal expansion in nanoporous prussian blue analogues MIIPtIV(CN)6·x{H2O} (0 ≤ x ≤ 2; M = Zn, Cd).J Am Chem Soc2005;127:17980-1

[22]

Zhou HL,Zhang JP.Supramolecular-jack-like guest in ultramicroporous crystal for exceptional thermal expansion behaviour.Nat Commun2015;6:6917 PMCID:PMC4411299

[23]

Auckett JE,Ogilvie SH.Continuous negative-to-positive tuning of thermal expansion achieved by controlled gas sorption in porous coordination frameworks.Nat Commun2018;9:4873 PMCID:PMC6242975

[24]

Baxter SJ,Ready AD,Wilkinson AP.Tuning thermal expansion in metal-organic frameworks using a mixed linker solid solution approach.J Am Chem Soc2019;141:12849-54

[25]

Henke S,Fischer RA.Massive anisotropic thermal expansion and thermo‐responsive breathing in metal-organic frameworks modulated by linker functionalization.Adv Funct Mater2013;23:5990-6

[26]

Sun HY,Zhao L.Colossal anisotropic thermal expansion through coupling spin crossover and rhombus deformation in a hexanuclear {FeIII4FeII2} Compound.Angew Chem Int Ed2023;62:e202302815

[27]

Platero-Prats AE,Gallington LC.Structural transitions of the metal-oxide nodes within metal-organic frameworks: on the local structures of NU-1000 and UiO-66.J Am Chem Soc2016;138:4178-85

[28]

Furukawa H,Zhang YB.Water adsorption in porous metal-organic frameworks and related materials.J Am Chem Soc2014;136:4369-81

[29]

Kim H,Kapustin EA.Adsorption-based atmospheric water harvesting device for arid climates.Nat Commun2018;9:1191 PMCID:PMC5864962

[30]

Hanikel N,Yaghi OM.MOF water harvesters.Nat Nanotechnol2020;15:348-55

[31]

Xu W.Metal-organic frameworks for water harvesting from air, anywhere, anytime.ACS Cent Sci2020;6:1348-54 PMCID:PMC7453559

[32]

Iacomi P,Marreiros J.Role of structural defects in the adsorption and separation of C3 hydrocarbons in Zr-fumarate-MOF (MOF-801).Chem Mater2019;31:8413-23

[33]

Dai S,Zhang S,Serre C.One-step room-temperature synthesis of metalIV carboxylate metal-organic frameworks.Angew Chem Int Ed2021;60:4282-8

[34]

Li CN,Tao ZP.Green synthesis of MOF-801(Zr/Ce/Hf) for CO2/N2 and CO2/CH4 separation. Inorg Chem 2023;62:7853-60.

[35]

Toby BH.EXPGUI, a graphical user interface for GSAS.J Appl Cryst2001;34:210-3

[36]

Yang X,Farrow CL.xPDFsuite: an end-to-end software solution for high throughput pair distribution function transformation, visualization and analysis. 2015. Available from: https://arxiv.org/abs/1402.3163 [Last accessed on 12 Apr 2024]

[37]

Cavka JH,Olsbye U.A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability.J Am Chem Soc2008;130:13850-1

[38]

Zhou HL,Ye JW.Thermal and gas dual-responsive behaviors of an expanded UiO-66-type porous coordination polymer.Chempluschem2016;81:817-21

[39]

Zhang X,Molokeev MS,Liu Y.Two-dimensional negative thermal expansion in a crystal of LiBO2.Chem Mater2022;34:4195-201

[40]

Liu Z,Wang C.Near-zero thermal expansion coordinated with geometric flexibility and π-π interaction in anisotropic [Zn8(SiO4)(m-BDC)6]n.Inorg Chem Front2019;6:1675-9

[41]

Nijem N,Canepa P.Tuning the gate opening pressure of metal-organic frameworks (MOFs) for the selective separation of hydrocarbons.J Am Chem Soc2012;134:15201-4

AI Summary AI Mindmap
PDF

73

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/