Topological transformation of magnetic hopfion in confined geometries

Yang Gao , Shuang Li , Yuelei Zhao , Zhaozhao Zhu , Linyu Cao , Jiawang Xu , Yan Zhou , Shouguo Wang

Microstructures ›› 2024, Vol. 4 ›› Issue (1) : 2024001

PDF
Microstructures ›› 2024, Vol. 4 ›› Issue (1) :2024001 DOI: 10.20517/microstructures.2023.69
Research Article

Topological transformation of magnetic hopfion in confined geometries

Author information +
History +
PDF

Abstract

Three-dimensional (3D) topological magnetic structures have attracted enormous interest due to their exceptional spatial structures and intriguing physics. Hopfions, characterized by the Hopf index, are 3D spin textures that emerged as closed twisted skyrmion strings. A comprehensive understanding of magnetic structural transitions within nanostructures is crucial for their applications in spintronics devices. Despite the demonstration of stabilization and current-driven dynamics of hopfion, their behavior in geometric confinement has remained unexplored. Here, we investigate the transformation between hopfions and torons in various nanostructures using micromagnetic simulations. By tailoring the axial ratio of elliptical nanodisks, the elliptical hopfion is found to be transformed into a toron structure. Moreover, the current-driven topological transformation between hopfion and toron has also been realized in finite-sized nanostripes and stepped nanostructures. This deformation and transformation arise from the repulsive potential of the boundaries or edges. To connect real-space observations and 3D topological spin configurations, we simulate the Lorentz transmission electron microscope images of the aforementioned magnetic structures. This study, uncovering the dynamics and transformation of hopfions, will invigorate 3D magnetic structures-based memory and logic devices.

Keywords

Hopfion / topological transformation / confined system / micromagnetic simulation

Cite this article

Download citation ▾
Yang Gao, Shuang Li, Yuelei Zhao, Zhaozhao Zhu, Linyu Cao, Jiawang Xu, Yan Zhou, Shouguo Wang. Topological transformation of magnetic hopfion in confined geometries. Microstructures, 2024, 4(1): 2024001 DOI:10.20517/microstructures.2023.69

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Skyrme THR.A non-linear field theory.Proc R Soc Lond A1961;260:127-38

[2]

Battye RA.Knots as stable soliton solutions in a three-dimensional classical field theory.Phys Rev Lett1998;81:4798

[3]

Fert A,Sampaio J.Skyrmions on the track.Nat Nanotechnol2013;8:152-6

[4]

Tonomura A,Yanagisawa K.Real-space observation of skyrmion lattice in helimagnet MnSi thin samples.Nano Lett2012;12:1673-7

[5]

Zhou Y.Magnetic skyrmions: intriguing physics and new spintronic device concepts.Natl Sci Rev2019;6:210-2 PMCID:PMC8294180

[6]

Li X,Bai Y.Bimeron clusters in chiral antiferromagnets.NPJ Comput Mater2020;6:169

[7]

Lin SZ,Batista CD.Skyrmion fractionalization and merons in chiral magnets with easy-plane anisotropy.Phys Rev B2015;91:224407

[8]

Gao Y,Wang Q.Spontaneous (Anti)meron chains in the domain walls of van der Waals Ferromagnetic Fe5-xGeTe2.Adv Mater2020;32:e2005228

[9]

Kolesnikov AG,Samardak AS.Skyrmionium - high velocity without the skyrmion Hall effect.Sci Rep2018;8:16966 PMCID:PMC6240074

[10]

Göbel B,Berakdar J,Parkin SSP.Electrical writing, deleting, reading, and moving of magnetic skyrmioniums in a racetrack device.Sci Rep2019;9:12119 PMCID:PMC6702348

[11]

Wolf D,Rößler UK.Unveiling the three-dimensional magnetic texture of skyrmion tubes.Nat Nanotechnol2022;17:250-5 PMCID:PMC8930765

[12]

Seki S,Ishibashi M.Direct visualization of the three-dimensional shape of skyrmion strings in a noncentrosymmetric magnet.Nat Mater2022;21:181-7

[13]

Ran K,Guang Y.Creation of a chiral bobber lattice in helimagnet-multilayer heterostructures.Phys Rev Lett2021;126:017204

[14]

Seki S,Waizner J.Propagation dynamics of spin excitations along skyrmion strings.Nat Commun2020;11:256 PMCID:PMC6959257

[15]

Zheng F,Borisov AB.Experimental observation of chiral magnetic bobbers in B20-type FeGe.Nat Nanotechnol2018;13:451-5

[16]

Tang J,Wang W.Magnetic skyrmion bundles and their current-driven dynamics.Nat Nanotechnol2021;16:1086-91

[17]

Guang Y,Zhang J.Superposition of emergent monopole and antimonopole in CoTb thin films.Phys Rev Lett2021;127:217201

[18]

Sutcliffe P.Skyrmion knots in frustrated magnets.Phys Rev Lett2017;118:247203

[19]

Wu JS.Hopfions, heliknotons, skyrmions, torons and both abelian and nonabelian vortices in chiral liquid crystals.Liq Cryst Rev2022;10:34-68

[20]

Raftrey D.Field-driven dynamics of magnetic hopfions.Phys Rev Lett2021;127:257201

[21]

Tai JB.Static hopf solitons and knotted emergent fields in solid-state noncentrosymmetric magnetic nanostructures.Phys Rev Lett2018;121:187201

[22]

Wang XS,Brataas A.Current-driven dynamics of magnetic hopfions.Phys Rev Lett2019;123:147203

[23]

Kleckner D.Creation and dynamics of knotted vortices.Nat Phys2013;9:253-8

[24]

Ackerman PJ.Static three-dimensional topological solitons in fluid chiral ferromagnets and colloids.Nat Mater2017;16:426-32

[25]

Tai JB,Smalyukh II.Topological transformations of Hopf solitons in chiral ferromagnets and liquid crystals.Proc Natl Acad Sci USA2018;115:921-6 PMCID:PMC5798365

[26]

Sugic D,Otte E.Particle-like topologies in light.Nat Commun2021;12:6785 PMCID:PMC8608860

[27]

Tai JB,Smalyukh II.Geometric transformation and three-dimensional hopping of Hopf solitons.Nat Commun2022;13:2986 PMCID:PMC9142506

[28]

Chen BG,Alexander GP,Smalyukh II.Generating the hopf fibration experimentally in nematic liquid crystals.Phys Rev Lett2013;110:237801

[29]

Liu Y,Zang J.Binding a hopfion in a chiral magnet nanodisk.Phys Rev B2018;98:174437

[30]

Sutcliffe P.Hopfions in chiral magnets.J Phys A Math Theor2018;51:375401

[31]

Liu Y,Han X.Three-dimensional dynamics of a magnetic hopfion driven by spin transfer torque.Phys Rev Lett2020;124:127204

[32]

Kent N,Raftrey D.Creation and observation of Hopfions in magnetic multilayer systems.Nat Commun2021;12:1562 PMCID:PMC7946913

[33]

Yu X,Iakoubovskii KV.Realization and current-driven dynamics of fractional hopfions and their ensembles in a helimagnet FeGe.Adv Mater2023;35:e2210646

[34]

Li S,Shen L,Ezawa M.Mutual conversion between a magnetic Néel hopfion and a Néel toron.Phys Rev B2022;105:174407

[35]

Zhang X,Zhou Y.Control and manipulation of a magnetic skyrmionium in nanostructures.Phys Rev B2016;94:094420

[36]

Vansteenkiste A,Dvornik M,Garcia-sanchez F.The design and verification of MuMax3.AIP Adv2014;4:107133

[37]

Zhu J,Hu Q.Current-driven transformations of a skyrmion tube and a bobber in stepped nanostructures of chiral magnets.Sci China Phys Mech Astron2021;64:227511

[38]

Iwasaki J,Nagaosa N.Current-induced skyrmion dynamics in constricted geometries.Nat Nanotechnol2013;8:742-7

[39]

Mccray AR,Li Y,Phatak C.Understanding complex magnetic spin textures with simulation-assisted lorentz transmission electron microscopy.Phys Rev Appl2021;15:044025

[40]

Zheng F,Wang S.Direct imaging of a zero-field target skyrmion and its polarity switch in a chiral magnetic nanodisk.Phys Rev Lett2017;119:197205

[41]

Hu Q,Tang J,Du H.Unidirectional current-driven toron motion in a cylindrical nanowire.Appl Phys Lett2021;118:022404

[42]

Zhao H,Smalyukh II.Topological solitonic macromolecules.Nat Commun2023;14:4581 PMCID:PMC10387112

[43]

Niitsu K,Booth AC.Geometrically stabilized skyrmionic vortex in FeGe tetrahedral nanoparticles.Nat Mater2022;21:305-10

[44]

Liu Y,Zang J.Shape dependent resonant modes of skyrmions in magnetic nanodisks.J Magn Magn Mater2018;455:9-13

[45]

Xia J,Ezawa M,Liu X.Dynamics of an elliptical ferromagnetic skyrmion driven by the spin-orbit torque.Appl Phys Lett2020;116:022407

[46]

Cui B,Shao Z.Néel-type elliptical skyrmions in a laterally asymmetric magnetic multilayer.Adv Mater2021;33:e2006924

[47]

Jiang W,Zhang W.Magnetism. Blowing magnetic skyrmion bubbles.Science2015;349:283-6

[48]

He M,Zhu Z.Evolution of topological skyrmions across the spin reorientation transition in Pt/Co/Ta multilayers.Phys Rev B2018;97:174419

[49]

Yu XZ,Onose Y.Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe.Nat Mater2011;10:106-9

[50]

Peng L,Taguchi Y,Tokura Y.Dynamic transition of current-driven single-skyrmion motion in a room-temperature chiral-lattice magnet.Nat Commun2021;12:6797 PMCID:PMC8613223

[51]

Wu Y,Tang J.Current-driven dynamics of skyrmion bubbles in achiral uniaxial magnets.Chinese Phys B2022;31:077504

[52]

Song D,Caron J.Quantification of magnetic surface and edge states in an FeGe nanostripe by off-axis electron holography.Phys Rev Lett2018;120:167204

[53]

Peng L,Karube K,Tokura Y.Formation and control of zero-field antiskyrmions in confining geometries.Adv Sci2022;9:e2202950 PMCID:PMC9534945

[54]

Jena J,Hirosawa T.Observation of fractional spin textures in a Heusler material.Nat Commun2022;13:2348 PMCID:PMC9054820

[55]

Hertel R,Fähnle M.Ultrafast nanomagnetic toggle switching of vortex cores.Phys Rev Lett2007;98:117201

[56]

Peng L,Koshibae W.Controlled transformation of skyrmions and antiskyrmions in a non-centrosymmetric magnet.Nat Nanotechnol2020;15:181-6

[57]

Yu XZ,Koshibae W.Thermally activated helicity reversals of skyrmions.Phys Rev B2016;93:134417

[58]

Vakili H,Ganguly S.Temporal memory with magnetic racetracks.IEEE J Explor Solid State2020;6:107-15

[59]

Song KM,Pan B.Skyrmion-based artificial synapses for neuromorphic computing.Nat Electron2020;3:148-55

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/