Reduced dimensional ferroelectric domains and their characterization techniques

Jinhyuk Jang , Si-Young Choi

Microstructures ›› 2024, Vol. 4 ›› Issue (2) : 2024016

PDF
Microstructures ›› 2024, Vol. 4 ›› Issue (2) :2024016 DOI: 10.20517/microstructures.2023.67
Review

Reduced dimensional ferroelectric domains and their characterization techniques

Author information +
History +
PDF

Abstract

Ferroelectricity is one of the most major physical phenomena in electronic devices due to its sustainable polarity in the absence of an external electric field and its switchability in response to external stimuli. In alignment with the industry trend towards increasingly integrated devices, research into smaller-sized ferroelectric materials becomes indispensable. In the pursuit of achieving the pinnacle of device miniaturization, recent studies have unveiled materials exhibiting sub-nanometric, unit cell-level domains. Concurrently, advances in transmission electron microscopy-based structural characterization techniques have been made, enabling in-depth analysis of the intricate properties of these miniaturized ferroelectric materials. This review highlights the structural mechanism of ferroelectricity in a reduced scale, as well as the recent advancements in electron microscopy techniques for characterizing miniaturized ferroelectric domains, particularly in the fields of in-situ biasing and atomic scale imaging. We believe that this work will provide structural insights for engineering and characterizing ferroelectrics for the design of downsized high-density memory devices at the quantum limit.

Keywords

Ferroelectrics / domains / thin films / miniaturization / atomic structure / transmission electron microscopy

Cite this article

Download citation ▾
Jinhyuk Jang, Si-Young Choi. Reduced dimensional ferroelectric domains and their characterization techniques. Microstructures, 2024, 4(2): 2024016 DOI:10.20517/microstructures.2023.67

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Scott JF.Applications of modern ferroelectrics.Science2007;315:954-9

[2]

Guyonnet J,Gariglio S.Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films.Adv Mater2011;23:5377-82

[3]

Gao P,Jokisaari JR.Direct observations of retention failure in ferroelectric memories.Adv Mater2012;24:1106-10

[4]

Valasek J.Piezo-electric and allied phenomena in rochelle salt.Phys Rev1921;17:475-81

[5]

Shirane G.Phase transitions in solid solutions of PbZrO3 and PbTiO3 (I) small concentrations of PbTiO3.J Phys Soc Jpn1952;7:5-11

[6]

Nassau K,Loiacono GM.Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching.J Phys Chem Solids1966;27:983-8

[7]

Anderson JR.Ferroelectric materials as storage elements for digital computers and switching systems.Trans AIEE Part I Comm Electron1953;71:395-401

[8]

Moll JL.A new solid state memory resistor.IEEE Trans Electron Devices1963;10:338

[9]

Dam B,Klaassen FC.Origin of high critical currents in YBa2Cu3O7-δ superconducting thin films.Nature1999;399:439-42

[10]

Roas B,Endres G.Epitaxial growth of YBa2Cu3O7-x thin films by a laser evaporation process.Appl Phys Lett1988;53:1557-9

[11]

de Araujo CAP, Cuchiaro JD, Mcmillan LD, Scott MC, Scott JF. Fatigue-free ferroelectric capacitors with platinum electrodes.Nature1995;374:627-9

[12]

Fong DD,Streiffer SK.Ferroelectricity in ultrathin perovskite films.Science2004;304:1650-3

[13]

Wang J,Zheng H.Epitaxial BiFeO3 multiferroic thin film heterostructures.Science2003;299:1719-22

[14]

Lee D,Gu Y.Emergence of room-temperature ferroelectricity at reduced dimensions.Science2015;349:1314-7

[15]

Cheng Y,Ye KH.Reversible transition between the polar and antipolar phases and its implications for wake-up and fatigue in HfO2-based ferroelectric thin film.Nat Commun2022;13:645 PMCID:PMC8814215

[16]

Böscke TS,Bräuhaus D,Böttger U.Ferroelectricity in hafnium oxide thin films.Appl Phys Lett2011;99:102903

[17]

Müller J,Schröder U.Ferroelectricity in simple binary ZrO2 and HfO2.Nano Lett2012;12:4318-23

[18]

Müller J,Böscke TS.Ferroelectricity in yttrium-doped hafnium oxide.J Appl Phys2011;110:114113

[19]

Ji D,Paudel TR.Freestanding crystalline oxide perovskites down to the monolayer limit.Nature2019;570:87-90

[20]

Guo Y,Zhang L.Unit-cell-thick domain in free-standing quasi-two-dimensional ferroelectric material.Phys Rev Mater2021;5:044403

[21]

Shirodkar SN.Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2.Phys Rev Lett2014;112:157601

[22]

Chang K,Lin H.Discovery of robust in-plane ferroelectricity y in atomic-thick SnTe.Science2016;353:274-8

[23]

Ding W,Wang Z.Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials.Nat Commun2017;8:14956 PMCID:PMC5385629

[24]

Liu F,Seyler KL.Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes.Nat Commun2016;7:12357 PMCID:PMC4987531

[25]

Belianinov A,Dziaugys A.CuInP2S6 room temperature layered ferroelectric.Nano Lett2015;15:3808-14

[26]

Wang C,Cobden D.Towards two-dimensional van der Waals ferroelectrics.Nat Mater2023;22:542-52

[27]

Merz WJ.The electric and optical behavior of BaTiO3 single-domain crystals.Phys Rev1949;76:1221-5

[28]

von Hippel A. Ferroelectricity, domain structure, and phase transitions of barium titanate.Rev Mod Phys1950;22:221-37

[29]

Stern EA.Character of order-disorder and displacive components in barium titanate.Phys Rev Lett2004;93:037601

[30]

Chaves A,Porto SPS.Coupled modes with A1 symmetry in tetragonal BaTiO3.Phys Rev B1974;10:3522-33

[31]

Comes R,Guinier A.The chain structure of BaTiO3 and KNbO3.Solid State Commun1968;6:715-9

[32]

Buscaglia V,Viviani M.Raman and AFM piezoresponse study of dense BaTiO3 nanocrystalline ceramics.J Eur Ceram Soc2005;25:3059-62

[33]

Baskaran N,Bhongale C,Chang H.Phase transformation studies of ceramic BaTiO3 using thermo-Raman and dielectric constant measurements.J Appl Phys2002;91:10038-43

[34]

Slater JC.Theory of the transition in KH2PO4.J Chem Phys1941;9:16-33

[35]

Sawada S,Fujii S.Ferroelectricity in NaNO2.Phys Rev Lett1958;1:320-1

[36]

Neaton JB,Waghmare UV,Rabe KM.First-principles study of spontaneous polarization in multiferroic BiFeO3.Phys Rev B2005;71:014113

[37]

Lee HN,Chisholm MF,Rabe KM.Suppressed dependence of polarization on epitaxial strain in highly polar ferroelectrics.Phys Rev Lett2007;98:217602

[38]

Azuma M,Oka K.Functional transition metal perovskite oxides with 6s2 lone pair activity stabilized by high-pressure synthesis.Annu Rev Mater Res2021;51:329-49

[39]

Benedek NA.Why are there so few perovskite ferroelectrics?.J Phys Chem C2013;117:13339-49

[40]

Van Aken BB, Palstra TTM, Filippetti A, Spaldin NA. The origin of ferroelectricity in magnetoelectric YMnO3.Nat Mater2004;3:164-70

[41]

Benedek NA.Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling.Phys Rev Lett2011;106:107204

[42]

Kimura T,Shintani H,Arima T.Magnetic control of ferroelectric polarization.Nature2003;426:55-8

[43]

Qiao H,Choi WS,Kim Y.Ultra-thin ferroelectrics.Mater Sci Eng R Rep2021;145:100622

[44]

Ascher E,Tar D.Dielectric properties of boracites and evidence for ferroelectricity.Solid State Commun1964;2:45-9

[45]

Schmid H,Ascher E.Magnetic susceptibilities of some 3D transition metal boracites.Solid State Commun1965;3:327-30

[46]

McQuaid RGP,Whatmore RW,Gregg JM.Injection and controlled motion of conducting domain walls in improper ferroelectric Cu-Cl boracite.Nat Commun2017;8:15105 PMCID:PMC5440803

[47]

Dowty E.Atomic displacements in ferroelectric trigonal and orthorhombic boracite structures.Solid State Commun1972;10:543-8

[48]

Zimmermann A,Schmid H.Observations of ferroelectric domains in boracites.Phys Stat Sol1970;3:707-20

[49]

Guy JGM,Aguado-Puente P.Anomalous motion of charged domain walls and associated negative capacitance in copper-chlorine boracite.Adv Mater2021;33:e2008068

[50]

Bousquet E,Stucki N.Improper ferroelectricity in perovskite oxide artificial superlattices.Nature2008;452:732-6

[51]

Kumagai Y.Structural domain walls in polar hexagonal manganites.Nat Commun2013;4:1540

[52]

Yoshida S,Akamatsu H.Ferroelectric Sr3Zr2O7: competition between hybrid improper ferroelectric and antiferroelectric mechanisms.Adv Funct Mater2018;28:1801856

[53]

Benedek NA,Djani H,Lightfoot P.Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments.Dalton Trans2015;44:10543-58

[54]

Roh CJ,Kim JR.Polar metal phase induced by oxygen octahedral network relaxation in oxide thin films.Small2020;16:e2003055

[55]

Jeong SG,Song S.Propagation control of octahedral tilt in SrRuO3 via artificial heterostructuring.Adv Sci2020;7:2001643 PMCID:PMC7435247

[56]

Geng WR,Zhu YL.Oxygen octahedral coupling mediated ferroelectric-antiferroelectric phase transition based on domain wall engineering.Acta Mater2020;198:145-52

[57]

Han H,Li W.Interfacial oxygen octahedral coupling-driven robust ferroelectricity in epitaxial Na0.5Bi0.5TiO3 thin films.Research2023;6:0191 PMCID:PMC10351392

[58]

Sando D,Bibes M.BiFeO3 epitaxial thin films and devices: past, present and future.J Phys Condens Matter2014;26:473201

[59]

Jang BK,Chu K.Electric-field-induced spin disorder-to-order transition near a multiferroic triple phase point.Nat Phys2017;13:189-96

[60]

Chen D,Zhu X.A strain-driven antiferroelectric-to-ferroelectric phase transition in La-doped BiFeO3 thin films on Si.Nano Lett2017;17:5823-9

[61]

Chu K,Sung JH.Enhancement of the anisotropic photocurrent in ferroelectric oxides by strain gradients.Nat Nanotechnol2015;10:972-9

[62]

Glazer AM.The classification of tilted octahedra in perovskites.Acta Cryst B1972;B28:3384-92

[63]

Han MJ,Ma DS.Coexistence of rhombohedral and orthorhombic phases in ultrathin BiFeO3 films driven by interfacial oxygen octahedral coupling.Acta Mater2018;145:220-6

[64]

Kim YM,Hatt A.Interplay of octahedral tilts and polar order in BiFeO3 films.Adv Mater2013;25:2497-504

[65]

Yuan Y,Stone G.Three-dimensional atomic scale electron density reconstruction of octahedral tilt epitaxy in functional perovskites.Nat Commun2018;9:5220 PMCID:PMC6283878

[66]

Yashima M.Structural phase transition and octahedral tilting in the calcium titanate perovskite CaTiO3.Solid State Ion2009;180:120-6

[67]

Van Aert S, Turner S, Delville R, Schryvers D, Van Tendeloo G, Salje EKH. Direct observation of ferrielectricity at ferroelastic domain boundaries in CaTiO3 by electron microscopy.Adv Mater2012;24:523-7

[68]

Yokota H,Haumont R.Direct evidence of polar nature of ferroelastic twin boundaries in CaTiO3 obtained by second harmonic generation microscope.Phys Rev B2014;89:144109

[69]

Eklund CJ,Rabe KM.Strain-induced ferroelectricity in orthorhombic CaTiO3 from first principles.Phys Rev B2009;79:220101

[70]

Kim JR,Go KJ.Stabilizing hidden room-temperature ferroelectricity via a metastable atomic distortion pattern.Nat Commun2020;11:4944 PMCID:PMC7532175

[71]

Mitra C,Lee HN.Oxygen diffusion pathways in brownmillerite SrCoO2.5: influence of structure and chemical potential.J Chem Phys2014;141:084710

[72]

Fuller CA,Frick B.Brownmillerite-type Sr2ScGaO5 oxide ion conductor: local structure, phase transition, and dynamics.Chem Mater2019;31:7395-404

[73]

Auckett JE,Pellegrini E.Combined experimental and computational study of oxide ion conduction dynamics in Sr2Fe2O5 brownmillerite.Chem Mater2013;25:3080-7

[74]

Macchesney JB,Potter JF.Electric and magnetic properties of the strontium ferrates.J Chem Phys1965;43:1907-13

[75]

Khare A,Park J.Directing oxygen vacancy channels in SrFeO2.5 epitaxial thin films.ACS Appl Mater Interfaces2018;10:4831-7

[76]

Young J.Crystal structure and electronic properties of bulk and thin film brownmillerite oxides.Phys Rev B2015;92:174111

[77]

Lim J.Role of oxygen vacancy in the spin-state change and magnetic ordering in SrCoO3-δ.Phys Rev B2018;98:085106

[78]

Kang KT,Lim J.A room-temperature ferroelectric ferromagnet in a 1D tetrahedral chain network.Adv Mater2019;31:e1808104

[79]

Tian H,Mao AJ.Novel type of ferroelectricity in brownmillerite structures: a first-principles study.Phys Rev Mater2018;2:084402

[80]

Taniguchi H,Kim J.Ferroelectricity driven by twisting of silicate tetrahedral chains.Angew Chem Int Ed2013;52:8088-92

[81]

Seol D,Hwang JY.Strong anisotropy of ferroelectricity in lead-free bismuth silicate.Nanoscale2015;7:11561-5

[82]

Adams DM,Russell DR.X-ray diffraction study of Hafnia under high pressure using synchrotron radiation.J Phys Chem Solids1991;52:1181-6

[83]

Sang X,Schenk T,Lebeau JM.On the structural origins of ferroelectricity in HfO2 thin films.Appl Phys Lett2015;106:162905

[84]

Smith SW,Rodriguez MA,Brumbach MT.Pyroelectric response in crystalline hafnium zirconium oxide (Hf1-xZrxO2) thin films.Appl Phys Lett2017;110:072901

[85]

Lee HJ,Lee K.Scale-free ferroelectricity induced by flat phonon bands in HfO2.Science2020;369:1343-7

[86]

Mitsui T.Domain structure of rochelle salt and KH2PO4.Phys Rev1953;90:193-202

[87]

Guo EJ,Herklotz A,Dörr K.Ferroelectric 180° domain wall motion controlled by biaxial strain.Adv Mater2015;27:1615-8

[88]

Cruz MP,Zhang JX.Strain control of domain-wall stability in epitaxial BiFeO3 (110) films.Phys Rev Lett2007;99:217601

[89]

Katayama K,Sakata O.Orientation control and domain structure analysis of {100}-oriented epitaxial ferroelectric orthorhombic HfO2-based thin films.J Appl Phys2016;119:134101

[90]

Gradauskaite E,Meier QN,Trassin M.Ferroelectric domain engineering using structural defect ordering.Chem Mater2022;34:6468-75

[91]

Li L,Zhang Y.Control of domain structures in multiferroic thin films through defect engineering.Adv Mater2018;30:e1802737

[92]

Baek SH,Folkman CM.Ferroelastic switching for nanoscale non-volatile magnetoelectric devices.Nat Mater2010;9:309-14

[93]

Nelson CT,Zhang Y.Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces.Nano Lett2011;11:828-34

[94]

Chouprik A,Zarubin S.Wake-up in a Hf0.5Zr0.5O2 film: a cycle-by-cycle emergence of the remnant polarization via the domain depinning and the vanishing of the anomalous polarization switching.ACS Appl Electron Mater2019;1:275-87

[95]

Choudhury S,Odagawa N.The influence of 180° ferroelectric domain wall width on the threshold field for wall motion.J Appl Phys2008;104:084107

[96]

Zhang Q,Gu L.Direct observation of multiferroic vortex domains in YMnO3.Sci Rep2013;3:2741 PMCID:PMC3781397

[97]

Seidel J,He Q.Conduction at domain walls in oxide multiferroics.Nat Mater2009;8:229-34

[98]

Rojac T,Drazic G.Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects.Nat Mater2017;16:322-7

[99]

Aschauer U,Selbach SM,Spaldin NA.Strain-controlled oxygen vacancy formation and ordering in CaMnO3.Phys Rev B2013;88:054111

[100]

Farokhipoor S.Conduction through 71° domain walls in BiFeO3 thin films.Phys Rev Lett2011;107:127601

[101]

Sluka T,Bednyakov P.Free-electron gas at charged domain walls in insulating BaTiO3.Nat Commun2013;4:1808 PMCID:PMC3674246

[102]

Mundy JA,Kumagai Y.Functional electronic inversion layers at ferroelectric domain walls.Nat Mater2017;16:622-7

[103]

Crassous A,Tagantsev AK.Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films.Nat Nanotechnol2015;10:614-8

[104]

Oh YS,Huang FT,Cheong SW.Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals.Nat Mater2015;14:407-13

[105]

Lee WM,Chu K.Spatially resolved photodetection in leaky ferroelectric BiFeO3.Adv Mater2012;24:OP49-53

[106]

Sluka T,Damjanovic D,Setter N.Enhanced electromechanical response of ferroelectrics due to charged domain walls.Nat Commun2012;3:748 PMCID:PMC4354168

[107]

McConville JPV,Wang B.Ferroelectric domain wall memristor.Adv Funct Mater2020;30:2000109 PMCID:PMC7357591

[108]

Liu Z,Li M.In-plane charged domain walls with memristive behaviour in a ferroelectric film.Nature2023;613:656-61

[109]

Fiebig M,Fröhlich D,Pisarev RV.Observation of coupled magnetic and electric domains.Nature2002;419:818-20

[110]

Choi T,Yi HT,Wu W.Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3.Nat Mater2010;9:253-8

[111]

Cheng S,Han MG.Topologically allowed nonsixfold vortices in a sixfold multiferroic material: observation and classification.Phys Rev Lett2017;118:145501

[112]

Du Y,Chen DP.Domain wall conductivity in oxygen deficient multiferroic YMnO3 single crystals.Appl Phys Lett2011;99:252107

[113]

Matsumoto T,Tohei T.Multivariate statistical characterization of charged and uncharged domain walls in multiferroic hexagonal YMnO3 single crystal visualized by a spherical aberration-corrected STEM.Nano Lett2013;13:4594-601

[114]

Småbråten DR,Skjærvø SH,Meier D.Charged domain walls in improper ferroelectric hexagonal manganites and gallates.Phys Rev Mater2018;2:114405

[115]

Xu X,Qi Y.Kinetically stabilized ferroelectricity in bulk single-crystalline HfO2:Y.Nat Mater2021;20:826-32

[116]

Lee TY,Lim HH.Ferroelectric polarization-switching dynamics and wake-up effect in Si-doped HfO2.ACS Appl Mater Interfaces2019;11:3142-9

[117]

Grimley ED,Mikolajick T,Lebeau JM.Atomic structure of domain and interphase boundaries in ferroelectric HfO2.Adv Mater Inter2018;5:1701258

[118]

Ding W,Tao L,Zhou Y.The atomic-scale domain wall structure and motion in HfO2-based ferroelectrics: a first-principle study.Acta Mater2020;196:556-64

[119]

Chen S,Hou Z.Recent progress on topological structures in ferroic thin films and heterostructures.Adv Mater2021;33:e2000857

[120]

Tang YL,Ma XL.Ferroelectrics. Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films.Science2015;348:547-51

[121]

Yadav AK,Hsu SL.Observation of polar vortices in oxide superlattices.Nature2016;530:198-201

[122]

Das S,Hong Z.Observation of room-temperature polar skyrmions.Nature2019;568:368-72

[123]

Wang YJ,Zhu YL.Polar meron lattice in strained oxide ferroelectrics.Nat Mater2020;19:881-6

[124]

Luk'yanchuk I,Razumnaya A.Hopfions emerge in ferroelectrics.Nat Commun2020;11:2433 PMCID:PMC7229001

[125]

Naumov II,Fu H.Unusual phase transitions in ferroelectric nanodisks and nanorods.Nature2004;432:737-40

[126]

Fu H.Ferroelectricity in barium titanate quantum dots and wires.Phys Rev Lett2003;91:257601

[127]

Choi KJ,Li YL.Enhancement of ferroelectricity in strained BaTiO3 thin films.Science2004;306:1005-9

[128]

Lee JH,Ryoo E.Thickness-driven morphotropic phase transition in metastable ferroelectric CaTiO3 films.Adv Elect Mater2022;8:2101398

[129]

Ahn CH,Triscone JM.Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures.Science2004;303:488-91

[130]

Stengel M.Origin of the dielectric dead layer in nanoscale capacitors.Nature2006;443:679-82

[131]

Chang LW,Scott JF.Settling the “dead layer” debate in nanoscale capacitors.Adv Mater2009;21:4911-4

[132]

Saad MM,Bowman RM,Morrison FD.Intrinsic dielectric response in ferroelectric nano-capacitors.J Phys Condens Matter2004;16:L451-6

[133]

Stengel M,Spaldin NA.Enhancement of ferroelectricity at metal-oxide interfaces.Nat Mater2009;8:392-7

[134]

Junquera J.Critical thickness for ferroelectricity in perovskite ultrathin films.Nature2003;422:506-9

[135]

Gerra G,Setter N.Ionic polarizability of conductive metal oxides and critical thickness for ferroelectricity in BaTiO3.Phys Rev Lett2006;96:107603

[136]

Streiffer SK,Fong DD.Observation of nanoscale 180 degrees stripe domains in ferroelectric PbTiO3 thin films.Phys Rev Lett2002;89:067601

[137]

Gao P,Li M.Possible absence of critical thickness and size effect in ultrathin perovskite ferroelectric films.Nat Commun2017;8:15549 PMCID:PMC5467161

[138]

Zeches RJ,Zhang JX.A strain-driven morphotropic phase boundary in BiFeO3.Science2009;326:977-80

[139]

Li L,Blum T.Observation of strong polarization enhancement in ferroelectric tunnel junctions.Nano Lett2019;19:6812-8

[140]

Wang H,Yoong HY.Direct observation of room-temperature out-of-plane ferroelectricity and tunneling electroresistance at the two-dimensional limit.Nat Commun2018;9:3319 PMCID:PMC6102252

[141]

Sai N,Demkov AA.Absence of critical thickness in an ultrathin improper ferroelectric film.Phys Rev Lett2009;102:107601

[142]

Sheng Z,Ogimoto Y.Multiple stable states with in-plane anisotropy in ultrathin YMnO3 films.Adv Mater2010;22:5507-11

[143]

Yun Y,Thind AS.Spontaneous polarization in an ultrathin improper-ferroelectric/dielectric bilayer in a capacitor structure at cryogenic temperatures.Phys Rev Appl2022;18:034071

[144]

Yang Q,Fang YW.Ferroelectricity in layered bismuth oxide down to 1 nanometer.Science2023;379:1218-24

[145]

Zhang Z,Stoica VA.Epitaxial ferroelectric Hf0.5Zr0.5O2 with metallic pyrochlore oxide electrodes.Adv Mater2021;33:e2105655

[146]

Yun Y,Li M.Intrinsic ferroelectricity in Y-doped HfO2 thin films.Nat Mater2022;21:903-9

[147]

Cheema SS,Shanker N.Enhanced ferroelectricity in ultrathin films grown directly on silicon.Nature2020;580:478-82

[148]

Cheema SS,Hsu SL.Emergent ferroelectricity in subnanometer binary oxide films on silicon.Science2022;376:648-52

[149]

Kittel C.Theory of the structure of ferromagnetic domains in films and small particles.Phys Rev1946;70:965-71

[150]

Prosandeev S,Bellaiche L.Kittel law in BiFeO3 ultrathin films: a first-principles-based study.Phys Rev Lett2010;105:147603

[151]

Catalan G,Ramesh R.Domain wall nanoelectronics.Rev Mod Phys2012;84:119-56

[152]

Schilling A,Bowman RM,Catalan G.Scaling of domain periodicity with thickness measured in BaTiO3 single crystal lamellae and comparison with other ferroics.Phys Rev B2006;74:024115

[153]

Feigl L,Stolichnov I.Controlled stripes of ultrafine ferroelectric domains.Nat Commun2014;5:4677

[154]

Wei XK,Sluka T,Ye ZG.Néel-like domain walls in ferroelectric Pb(Zr,Ti)O3 single crystals.Nat Commun2016;7:12385 PMCID:PMC4992163

[155]

De Luca G, Rossell MD, Schaab J, Viart N, Fiebig M, Trassin M. Domain wall architecture in tetragonal ferroelectric thin films.Adv Mater2017;29:1605145

[156]

Cherifi-Hertel S,Hertel R.Non-ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy.Nat Commun2017;8:15768 PMCID:PMC5472758

[157]

Han MG,Wu L.Ferroelectric switching dynamics of topological vortex domains in a hexagonal manganite.Adv Mater2013;25:2415-21

[158]

Schaab J,Krohns S.Electrical half-wave rectification at ferroelectric domain walls.Nat Nanotechnol2018;13:1028-34

[159]

Holtz ME,Mundy JA.Topological defects in hexagonal manganites: inner structure and emergent electrostatics.Nano Lett2017;17:5883-90

[160]

Han M,Niu K.Continuously tunable ferroelectric domain width down to the single-atomic limit in bismuth tellurite.Nat Commun2022;13:5903 PMCID:PMC9537171

[161]

Hirai K,Ozaki Y.Melting of oxygen vacancy order at oxide-heterostructure interface.ACS Appl Mater Interfaces2017;9:30143-8

[162]

Young J,Mukherjee D.Polar oxides without inversion symmetry through vacancy and chemical order.J Am Chem Soc2017;139:2833-41

[163]

Kim S,Song K.Inverse size-dependence of piezoelectricity in single BaTiO3 nanoparticles.Nano Energy2019;58:78-84

[164]

Lu H,Esque de los Ojos D.Mechanical writing of ferroelectric polarization.Science2012;336:59-61

[165]

Lu H,Richarz L.Electromechanics of domain walls in uniaxial ferroelectrics.Adv Funct Mater2023;33:2213684

[166]

Buragohain P,Mimura T,Funakubo H.Effect of film microstructure on domain nucleation and intrinsic switching in ferroelectric Y:HfO2 thin film capacitors.Adv Funct Mater2022;32:2108876

[167]

Gruverman A,Meier D.Piezoresponse force microscopy and nanoferroic phenomena.Nat Commun2019;10:1661 PMCID:PMC6458164

[168]

Christman JA,Kingon AI.Piezoelectric measurements with atomic force microscopy.Appl Phys Lett1998;73:3851-3

[169]

Kalinin SV,Chen LQ.Local polarization dynamics in ferroelectric materials.Rep Prog Phys2010;73:056502

[170]

Jesse S,Kalinin SV.Switching spectroscopy piezoresponse force microscopy of ferroelectric materials.Appl Phys Lett2006;88:062908

[171]

Gruverman A,Scott JF.Piezoresponse force microscopy studies of switching behavior of ferroelectric capacitors on a 100-ns time scale.Phys Rev Lett2008;100:097601

[172]

Harnagea C,Hesse D.Contact resonances in voltage-modulated force microscopy.Appl Phys Lett2003;83:338-40

[173]

Rodriguez BJ,Kalinin SV.Dual-frequency resonance-tracking atomic force microscopy.Nanotechnology2007;18:475504

[174]

Jesse S,Proksch R,Rodriguez BJ.The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale.Nanotechnology2007;18:435503

[175]

Choi HJ,Jung SY.Thermal stress-assisted annealing to improve the crystalline quality of an epitaxial YSZ buffer layer on Si.J Mater Chem C2022;10:10027-36

[176]

Zhang Y,Sando D.Controlled nucleation and stabilization of ferroelectric domain wall patterns in epitaxial (110) bismuth ferrite heterostructures.Adv Funct Mater2020;30:2003571

[177]

Gao P,Jokisaari JR.Revealing the role of defects in ferroelectric switching with atomic resolution.Nat Commun2011;2:591

[178]

Han MG,Wu L.Interface-induced nonswitchable domains in ferroelectric thin films.Nat Commun2014;5:4693 PMCID:PMC8491438

[179]

Lee JK,Song K.Direct observation of asymmetric domain wall motion in a ferroelectric capacitor.Acta Mater2013;61:6765-77

[180]

Chen Z,Huang Q.Giant tuning of ferroelectricity in single crystals by thickness engineering.Sci Adv2020;6:eabc7156 PMCID:PMC7556833

[181]

Lee H,Kim GY,Choi SY.TEM sample preparation using micro-manipulator for in-situ MEMS experiment.Appl Microsc2021;51:8 PMCID:PMC8190252

[182]

Vogel A,Campanini M,Rossell MD.Monitoring electrical biasing of Pb(Zr0.2Ti0.8)O3 ferroelectric thin films in situ by DPC-STEM imaging.Materials2021;14:4749. PMCID:PMC8400982

[183]

Zintler A,Pivak Y.FIB based fabrication of an operative Pt/HfO2/TiN device for resistive switching inside a transmission electron microscope.Ultramicroscopy2017;181:144-9

[184]

Nukala P,Wei Y.Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices.Science2021;372:630-5

[185]

Huang Q,Cabral MJ.Direct observation of nanoscale dynamics of ferroelectric degradation.Nat Commun2021;12:2095 PMCID:PMC8027400

[186]

Cai S,Niu B.In situ observation of domain wall lateral creeping in a ferroelectric capacitor.Adv Funct Mater2023;33:2304606

[187]

Condurache O,Rojac T.Atomic-level response of the domain walls in bismuth ferrite in a subcoercive-field regime.Nano Lett2023;23:750-6 PMCID:PMC9881151

[188]

Du H,Jia CL.Multiple polarization orders in individual twinned colloidal nanocrystals of centrosymmetric HfO2.Matter2021;4:986-1000

[189]

Jia CL,Alexe M,Vrejoiu I.Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3.Science2011;331:1420-3

[190]

Jia CL,Wang D.Nanodomains and nanometer-scale disorder in multiferroic bismuth ferrite single crystals.Acta Mater2015;82:356-68

[191]

Hwang SY,Qi Y.Enhanced thermal stability by short-range ordered ferroelectricity in K0.5Na0.5NbO3-based piezoelectric oxides.Mater Horiz2023;10:2656-66

[192]

Kim GY,Sung KD.Disordered ferroelectricity in the PbTiO3/SrTiO3 superlattice thin film.APL Mater2017;5:066104

[193]

Gong FH,Wang YJ.Absence of critical thickness for polar skyrmions with breaking the Kittel's law.Nat Commun2023;14:3376 PMCID:PMC10250330

[194]

Sun Y,Tan C.Subunit cell-level measurement of polarization in an individual polar vortex.Sci Adv2019;5:eaav4355 PMCID:PMC6824850

[195]

Kim HP,Jeong HY.Symmetry-bridging phase as the mechanism for the large strains in relaxor-PbTiO3 single crystals.J Eur Ceram Soc2019;39:3327-31

[196]

Yoon H,Lim TW.Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films.Nat Mater2016;15:1113-9

[197]

Findlay SD,Cardamone LA,Shibata N.Enhanced light element imaging in atomic resolution scanning transmission electron microscopy.Ultramicroscopy2014;136:31-41

[198]

Liu C,Zheng T.Decoding the atomic-scale structural origin of large strain performance in BNT-6BT based relaxor ferroelectrics.J Phys Chem Lett2023;14:6234-40

[199]

Chen F,Sun X.Atomic-scale insight into the epitaxial growth mechanism and interfacial coupling of BNT film prepared by hydrothermal synthesis.J Mater Sci Technol2023;164:198-204

[200]

Campanini M,Yang CH,Rossell MD.Periodic giant polarization gradients in doped BiFeO3 thin films.Nano Lett2018;18:717-24

[201]

Yun S,Chu K.Flexopiezoelectricity at ferroelastic domain walls in WO3 films.Nat Commun2020;11:4898 PMCID:PMC7524836

[202]

Gao W,Wang H.Real-space charge-density imaging with sub-ångström resolution by four-dimensional electron microscopy.Nature2019;575:480-4

[203]

Huyan H,Yan X.Direct observation of polarization-induced two-dimensional electron/hole gases at ferroelectric-insulator interface.NPJ Quantum Mater2021;6:88

[204]

Campanini M,Ederer C,Rossell MD.Buried in-plane ferroelectric domains in Fe-doped single-crystalline aurivillius thin films.ACS Appl Electron Mater2019;1:1019-28

[205]

Shibata N,Kohno Y,Kondo Y.Differential phase-contrast microscopy at atomic resolution.Nat Phys2012;8:611-5

[206]

Weymann C,Lichtensteiger C.Non-Ising domain walls in c-phase ferroelectric lead titanate thin films.Phys Rev B2022;106:L241404

[207]

Calderon S 5th,Baksa SM.Atomic-scale polarization switching in wurtzite ferroelectrics.Science2023;380:1034-8

[208]

Han J,Jang J,Choi SY.Materials property mapping from atomic scale imaging via machine learning based sub-pixel processing.NPJ Comput Mater2022;8:196

[209]

Galindo PL,Sanchez AM.The peak Pairs algorithm for strain mapping from HRTEM images.Ultramicroscopy2007;107:1186-93

[210]

Nord M,MacLaren I,Holmestad R.Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting.Adv Struct Chem Imaging2017;3:9 PMCID:PMC5306439

[211]

Zhang Q,Jin CH,Lin F.CalAtom: a software for quantitatively analysing atomic columns in a transmission electron microscope image.Ultramicroscopy2019;202:114-20

[212]

Wang Y,Sigle W,van Aken PA.Oxygen octahedra picker: a software tool to extract quantitative information from STEM images.Ultramicroscopy2016;168:46-52

[213]

Marks LD.Wiener-filter enhancement of noisy HREM images.Ultramicroscopy1996;62:43-52

[214]

Wei DY.An optimized locally adaptive non-local means denoising filter for cryo-electron microscopy data.J Struct Biol2010;172:211-8

[215]

Mevenkamp N,Dahmen W,Yankovich AB.Poisson noise removal from high-resolution STEM images based on periodic block matching.Adv Struct Chem Imag2015;1:3

[216]

Dabov K,Katkovnik V.Image denoising by sparse 3-D transform-domain collaborative filtering.IEEE Trans Image Process2007;16:2080-95

[217]

Kim YH,Jeong M.Hybrid deep learning crystallographic mapping of polymorphic phases in polycrystalline Hf0.5Zr0.5O2 thin films.Small2022;18:e2107620

[218]

Cheng Z,Yang Y.Neural network approach for ferroelectric hafnium oxide phase identification at the atomistic scale.Mater Today Electron2023;3:100027

AI Summary AI Mindmap
PDF

86

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/