Research progress of amorphous catalysts in the field of electrocatalysis

Zhenyang Yu , Qi Sun , Lianwang Zhang , Huan Yang , Yuefang Chen , Junpeng Guo , Mengmeng Zhang , Zhijia Zhang , Yong Jiang

Microstructures ›› 2024, Vol. 4 ›› Issue (2) : 2024022

PDF
Microstructures ›› 2024, Vol. 4 ›› Issue (2) :2024022 DOI: 10.20517/microstructures.2023.66
Review

Research progress of amorphous catalysts in the field of electrocatalysis

Author information +
History +
PDF

Abstract

Amorphous materials feature unique structures and physicochemical properties, resulting in their synthesis and applications becoming a dynamic and fascinating new research direction. The high specific surface area, abundant active sites, and good electron transport properties endow amorphous materials with excellent electrocatalytic properties, thus appealing to increasing attention. Based on this, the summary of the current research status of amorphous catalysts in the field of electrocatalysis is urgent and important. In this review, the research progress of amorphous catalysts in electrocatalysis is systematically introduced, focusing on the classification, synthesis methods, modification strategies, characterizations, and electrocatalytic application (including hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, carbon dioxide reduction reaction, and nitrogen reduction reaction). Finally, this review proposes the prospects and challenges for the future development of high-active and high-selectivity amorphous electrocatalysts.

Keywords

Amorphous catalysts / modulation strategy / electrocatalysis

Cite this article

Download citation ▾
Zhenyang Yu, Qi Sun, Lianwang Zhang, Huan Yang, Yuefang Chen, Junpeng Guo, Mengmeng Zhang, Zhijia Zhang, Yong Jiang. Research progress of amorphous catalysts in the field of electrocatalysis. Microstructures, 2024, 4(2): 2024022 DOI:10.20517/microstructures.2023.66

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang QR,Peng J,Liu HK.Recent progress on alloy-based anode materials for potassium-ion batteries.Microstructures2023;3:2023013

[2]

Yu Z,Li H.Tuning single-phase medium-entropy oxides derived from nanoporous NiCuCoMn alloy as a highly stable anode for Li-ion batteries.Rare Met2023;42:2982-92

[3]

Zhao SM,Zhu N,Wang F.Dual-band electrochromic materials for energy-saving smart windows.Carbon Neutralization2023;2:4-27

[4]

Zhang Z,Chen Y.Regulating the intrinsic electronic structure of carbon nanofibers with high-spin state Ni for sodium storage with high-power density.J Mater Sci Technol2024;171:16-23

[5]

Yan L,Sun Q.Phase separation-hydrogen etching-derived Cu-decorated Cu-Mn bimetallic oxides with oxygen vacancies boosting superior sodium-ion storage kinetics.J Energy Chem2023;80:163-73

[6]

Chen Y,Guo J.Research on carbon-based and metal-based negative electrode materials via DFT calculation for high potassium storage performance: a review.Energy Mater2023;3:300044

[7]

Abdelhafiz A,Harutyunyan AR.Carbothermal shock synthesis of high entropy oxide catalysts: dynamic structural and chemical reconstruction boosting the catalytic activity and stability toward oxygen evolution reaction.Adv Energy Mater2022;12:2200742

[8]

Li L,Lu M.Electron-enriched single-Pd-sites on g-C3N4 nanosheets achieved by in-situ anchoring twinned Pd nanoparticles for efficient CO2 photoreduction.Advanced Powder Materials2024;3:100170

[9]

Khan I,Bake A.Robust electrocatalysts decorated three-dimensional laser-induced graphene for selective alkaline OER and HER.Carbon2023;213:118292

[10]

Li H,Luo H,Zhu W.Recent developments in metal nanocluster-based catalysts for improving photocatalytic CO2 reduction performance.Microstructures2023;3:2023024

[11]

Wang Y,Li Y.Atom-level interfacial synergy of single-atom site catalysts for electrocatalysis.J Energy Chem2022;65:103-15

[12]

Li Y,Chen Q,Chen M.Emerging of heterostructure materials in energy storage: a review.Adv Mater2021;33:e2100855

[13]

Yang Y,Zheng X.Anion-exchange membrane water electrolyzers and fuel cells.Chem Soc Rev2022;51:9620-93

[14]

Li C,Chen Y.Architecting braided porous carbon fibers based on high-density catalytic crystal planes to achieve highly reversible sodium-ion storage.Adv Sci2022;9:e2104780 PMCID:PMC9218750

[15]

Li H, Chang SH, Zhang MM. Research progress on properties tuning and products of Cu-based catalyst in electrocatalytic CO2 reduction.Copper Eng2023;6:38-50

[16]

Zhang M,Xue H.Acceptor-doping accelerated charge separation in Cu2O photocathode for photoelectrochemical water splitting: theoretical and experimental studies.Angew Chem Int Ed2020;59:18463-7

[17]

Wang Y,Li H.Controlled etching to immobilize highly dispersed Fe in MXene for electrochemical ammonia production.Carbon Neutralization2022;1:117-25

[18]

Kang S,Gao W.Toward safer lithium metal batteries: a review.Energy Mater2023;3:300043

[19]

Liu H,Kang J.A freestanding nanoporous NiCoFeMoMn high-entropy alloy as an efficient electrocatalyst for rapid water splitting.Chem Eng J2022;435:134898

[20]

Wang Z,Feng Y.Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders.Nat Commun2022;13:130 PMCID:PMC8748705

[21]

Li L,Shao Q.Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction.Adv Mater2021;33:e2004243

[22]

Wang Z,Singh N.Recent discoveries in the reaction mechanism of heterogeneous electrocatalytic nitrate reduction.Catal Sci Technol2021;11:705-25

[23]

Ma W,Wang W,Zhang Q.Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts.Chem Soc Rev2021;50:12897-914

[24]

Chen M,Miao Z.Strong metal-support interaction of Pt-based electrocatalysts with transition metal oxides/nitrides/carbides for oxygen reduction reaction.Microstructures2023;3:2023025

[25]

Siu JC,Lin S.Catalyzing electrosynthesis: a homogeneous electrocatalytic approach to reaction discovery.ACC Chem Res2020;53:547-60 PMCID:PMC7245362

[26]

Mchugh PJ,Symes MD.Decoupled electrochemical water splitting: from fundamentals to applications.Adv Energy Mater2020;10:2002453

[27]

Wang J,Liu Q,Asiri AM.Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting.Adv Mater2016;28:215-30

[28]

Zhao C,Xu S.Construction of amorphous CoFeOx(OH)y/MoS2/CP electrode for superior OER performance.Int J Hydrogen Energy2022;47:28859-68

[29]

Jin J,Zhao X,Zhang F.An amorphous NiCuFeP@Cu3P nanoarray for an efficient hydrogen evolution reaction.Inorg Chem Front2022;9:1446-55

[30]

Cheng D,Chen C.Crystalline/amorphous Co2P@FePO4 core/shell nanoheterostructures supported on porous carbon microspheres as efficient oxygen reduction electrocatalysts.Chem Mater2019;31:8026-34

[31]

Xu Y,Sheng Y.Controlled boron incorporation tuned two-phase interfaces and Lewis acid sites in bismuth nanosheets for driving CO2 electroreduction to formate.J Mater Chem A2023;11:18434-40

[32]

Shi M,Li S,Yan J.Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution.Adv Energy Mater2018;8:1800124

[33]

Wang X,Yu X,Cui X.Advances and insights in amorphous electrocatalyst towards water splitting.Chin J Catal2023;51:5-48

[34]

Zhou Y.Progress and challenge of amorphous catalysts for electrochemical water splitting.ACS Mater Lett2021;3:136-47

[35]

Zhai W,Chen F,Yu H.Amorphous materials for elementary-gas-involved electrocatalysis: an overview.Nanoscale2021;13:19783-811

[36]

Zhang C,Rong JF. Amorphous catalysts for electrochemical water splitting. China Pet Process Pe 2022;24:1-13. Available from: http://www.chinarefining.com/EN/Y2022/V24/I2/1 [Last accessed on 10 Apr 2024]

[37]

Wang H,Yang N.Dual-defects adjusted crystal-field splitting of LaCo1-xNixO3-δ hollow multishelled structures for efficient oxygen evolution.Angew Chem Int Ed2020;59:19691-5

[38]

Anantharaj S.Amorphous catalysts and electrochemical water splitting: an untold story of harmony.Small2020;16:e1905779

[39]

Dan H,Li Z,Ding Y.Preparation of amorphous ZrO2 powders by hydrothermal-assisted sol-gel method.Inorg Chem Commun2022;138:109272

[40]

Liu H,Han R.Development of hydrogen-free fully amorphous silicon oxycarbide coating by thermal organometallic chemical vapor deposition technique.J Non-Cryst Solids2022;575:121204

[41]

Wu Y,Xu K.A study on the formation conditions of amorphous nickel-phosphorus (Ni-P) alloy by laser-assisted electrodeposition.Appl Surf Sci2021;535:147707

[42]

Olowoyo JO.Recent progress on bimetallic-based spinels as electrocatalysts for the oxygen evolution reaction.Small2022;18:e2203125

[43]

Kumar A.Porous NiFe-oxide nanocubes as bifunctional electrocatalysts for efficient water-splitting.ACS Appl Mater Interfaces2017;9:41906-15

[44]

Nguyen TX,Lin C,Ting J.Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction.Adv Funct Mater2021;31:2101632

[45]

Qiu H,Gao J.Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction.ACS Mater Lett2019;1:526-33

[46]

Wang H,Li Y.Durable and efficient hollow porous oxide spinel microspheres for oxygen reduction.Joule2018;2:337-48

[47]

Fang L,Xu H.Crystal-plane engineering of NiCo2O4 electrocatalysts towards efficient overall water splitting.J Catal2018;357:238-46

[48]

Baek J,Mukherjee P.Synergistic effects of mixing and strain in high entropy spinel oxides for oxygen evolution reaction.Nat Commun2023;14:5936 PMCID:PMC10517924

[49]

Altaf A,Altaf M,Sher M.Enhanced electrocatalytic activity of amorphized LaCoO3 for oxygen evolution reaction. Chem Asian J 2023:e202300870

[50]

Smith RDL,Fagan RD,Berlinguette CP.Facile photochemical preparation of amorphous iridium oxide films for water oxidation catalysis.Chem Mater2014;26:1654-9

[51]

Do VH,Jose V.Pd-PdO nanodomains on amorphous Ru metallene oxide for high-performance multifunctional electrocatalysis.Adv Mater2023;35:e2208860

[52]

Zhang L,Liu H.Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: a robust pH-universal oxygen evolution electrocatalyst.Angew Chem Int Ed2021;60:18821-9

[53]

Li Y,Liu L.Ultra-low Pt doping and Pt-Ni pair sites in amorphous/crystalline interfacial electrocatalyst enable efficient alkaline hydrogen evolution.Small2023;19:e2300368

[54]

Wang W,He T.Tailoring amorphous PdCu nanostructures for efficient C-C cleavage in ethanol electrooxidation.Nano Lett2022;22:7028-33

[55]

Jiang S,Yang Z.Self-supported hierarchical porous FeNiCo-based amorphous alloys as high-efficiency bifunctional electrocatalysts toward overall water splitting.Int J Hydrogen Energy2021;46:36731-41

[56]

Zhang X,Guo Y,You T.Amorphous flower-like molybdenum-sulfide-@-nitrogen-doped-carbon-nanofiber film for use in the hydrogen-evolution reaction.J Colloid Interface Sci2016;472:69-75

[57]

Chen Z,Wang Z.Amorphous cobalt oxide nanoparticles as active water-oxidation catalysts.ChemCatChem2017;9:3641-5

[58]

Pang Y,Zhu S.Self-supporting amorphous nanoporous NiFeCoP electrocatalyst for efficient overall water splitting.J Mater Sci Technol2021;82:96-104

[59]

Hu L,Liu C.Amorphous CoB nanoarray as a high-efficiency electrocatalyst for nitrite reduction to ammonia.Inorg Chem Front2022;9:6075-9

[60]

Wang Z,Zhao Y.Research progress on high entropy alloys and high entropy derivatives as OER catalysts.J Environ Chem Eng2023;11:109080

[61]

Wang H,Li X,Hao X.Nanostructured amorphous Fe29Co27Ni23Si9B12 high-entropy-alloy: an efficient electrocatalyst for oxygen evolution reaction.J Mater Sci Technol2021;68:191-8

[62]

Wang Q,Li Y,Jia Z.Non-noble metal-based amorphous high-entropy oxides as efficient and reliable electrocatalysts for oxygen evolution reaction.Nano Res2022;15:8751-9

[63]

Li M,Ni W.Activating surface atoms of high entropy oxides for enhancing oxygen evolution reaction.Chin Chem Lett2023;34:107571

[64]

Yan G,Zhang Z.Nanoparticle-decorated ultrathin La2O3 nanosheets as an efficient electrocatalysis for oxygen evolution reactions.Nanomicro Lett2020;12:49 PMCID:PMC7770806

[65]

Ghobrial S,Thorpe SJ.Amorphous Ni-Nb-Y alloys as hydrogen evolution electrocatalysts.Electrocatalysis2019;10:243-52

[66]

Sun Y,Xin H,Chen L.Enhancement in oxidative property on amorphous rare earth doped Mn catalysts.Catal Commun2016;77:94-7

[67]

Gao J,Kong L.Amorphous cobalt boride alloy synthesized by liquid phase methods as electrode materials for electrochemical capacitors.Part Part Syst Charact2021;38:2100020

[68]

Kong L,Nie K,Tian G.Preparation of layered interconnected Si-Li2MnSiO4 electrode materials for the positive electrode of battery-type capacitors.Ionics2022;28:5189-98

[69]

Ye Y,Zhang W.Precipitation of cesium lead halide perovskite nanocrystals in glasses based on liquid phase separation.J Am Ceram Soc2022;105:6105-15

[70]

Zhang H,Ouyang M,Xie F.A self-reconstructed bifunctional electrocatalyst of pseudo-amorphous nickel carbide @ iron oxide network for seawater splitting.Adv Sci2022;9:e2200146 PMCID:PMC9131433

[71]

Wang A,Zhang H.Ambient temperature NO oxidation over Cr-based amorphous mixed oxide catalysts: effects from the second oxide components.Catal Sci Technol2017;7:2362-70

[72]

Liu W,Dang L.Amorphous cobalt-iron hydroxide nanosheet electrocatalyst for efficient electrochemical and photo-electrochemical oxygen evolution.Adv Funct Mater2017;27:1603904

[73]

Hasannaeimi V,Salloom R,Schroers J.Nanomanufacturing of non-noble amorphous alloys for electrocatalysis.ACS Appl Energy Mater2020;3:12099-107

[74]

Balram A,Santhanagopalan S.Enhanced oxygen evolution reaction electrocatalysis via electrodeposited amorphous α-phase nickel-cobalt hydroxide nanodendrite forests.ACS Appl Mater Interfaces2017;9:28355-65

[75]

Wang W,Qiao Z,Liu P.Hydrodeoxygenation of p-cresol on unsupported Ni-W-Mo-S catalysts prepared by one step hydrothermal method.Catal Commun2014;56:17-22

[76]

Esquius J, Morgan DJ, Spanos I, Hewes DG, Freakley SJ, Hutchings GJ. Effect of base on the facile hydrothermal preparation of highly active IrOx oxygen evolution catalysts.ACS Appl Energy Mater2020;3:800-9

[77]

Chen G,Chen HM.An amorphous nickel-iron-based electrocatalyst with unusual local structures for ultrafast oxygen evolution reaction.Adv Mater2019;31:e1900883

[78]

Feng D,Qin R.Flower-like amorphous MoO3-x stabilized Ru single atoms for efficient overall water/seawater splitting.Adv Sci2023;10:e2300342 PMCID:PMC10288252

[79]

Zhong R,Peng L.Silica-carbon nanocomposite acid catalyst with large mesopore interconnectivity by vapor-phase assisted hydrothermal treatment.ACS Sustain Chem Eng2018;6:7859-70

[80]

Karki S.Development of polymer-based new high performance thin-film nanocomposite nanofiltration membranes by vapor phase interfacial polymerization for the removal of heavy metal ions.Chem Eng J2022;446:137303

[81]

Xia J,Huang X.Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses.Nanoscale2016;8:2063-70

[82]

Grüner C,Bauer J,Rauschenbach B.Morphology of thin films formed by oblique physical vapor deposition.ACS Appl Nano Mater2018;1:1370-6

[83]

Wei TR,Liu Q,Luo J.Oxygen vacancy-rich amorphous copper oxide enables highly selective electroreduction of carbon dioxide to ethylene.Acta Physico Chimica Sinica2022;2:20220702

[84]

Hong YL,Wang L.Chemical vapor deposition of layered two-dimensional MoSi2N4 materials.Science2020;369:670-4

[85]

Zhang ZJ,Chen YF.Modulating p-d orbital hybridization by CuO/Cu nanoparticles enables carbon nanofibers high cycling stability as anode for sodium storage.Rare Met2023;42:4039-47

[86]

Su G,Loya PE.Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application.Nano Lett2015;15:506-13

[87]

Wu G,Cui P.A general synthesis approach for amorphous noble metal nanosheets.Nat Commun2019;10:4855 PMCID:PMC6813339

[88]

Li K.Recent progress in high-entropy alloys for catalysts: synthesis, applications, and prospects.Mater Today Energy2021;20:100638

[89]

Ricciardella F,Kurganova E,Ahmadi M.Growth of multi-layered graphene on molybdenum catalyst by solid phase reaction with amorphous carbon.2D Mater2019;6:035012

[90]

Sundeev R,Veligzhanin A,Zubavichus Y.Difference between local atomic structures of the amorphous Ti2NiCu alloy prepared by melt quenching and severe plastic deformation.Mater Lett2018;214:115-8

[91]

Yang X,Cao S.An amorphous nanoporous PdCuNi-S hybrid electrocatalyst for highly efficient hydrogen production.Appl Catal B Environ2019;246:156-65

[92]

Li H,Wang Y,Liu C.Disordered and oxygen vacancy-rich NiFe hydroxides/oxides in situ grown on amorphous ribbons for boosted alkaline water oxidation.J Electroanal Chem2021;880:114918

[93]

Wang ZJ,Yu JH,Liu YH.Low-iridium-content IrNiTa metallic glass films as intrinsically active catalysts for hydrogen evolution reaction.Adv Mater2020;32:e1906384

[94]

Gou J,Yu Z.Architecting a 3D continuous C/CuVO3@Cu composite anode for lithium-ion storage.Surf Innov2023;11:70-8

[95]

Cole KM,Botton GA,Thorpe SJ.Amorphous Ni-based nanoparticles for alkaline oxygen evolution.ACS Appl Nano Mater2020;3:10522-30

[96]

Duan Y,Hu SJ.Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis.Angew Chem Int Ed2019;58:15772-7

[97]

Li Z,Huang Z.Amorphization of LaCoO3 perovskite nanostructures for efficient oxygen evolution.ACS Appl Nano Mater2022;5:14209-15

[98]

Zhang M,Ma CL,Liu YT.Highly active and selective electroreduction of N2 by the catalysis of Ga single atoms stabilized on amorphous TiO2 nanofibers.ACS Nano2022;16:4186-96

[99]

Lu J,Zhuo Y,Liu D.Greatly boosting seawater hydrogen evolution by surface amorphization and morphology engineering on MoO2/Ni3(PO4)2.Adv Funct Mater2023;33:2308191

[100]

Li X,Li D,Tao H.Amorphous alloys for electrocatalysis: the significant role of the amorphous alloy structure.Nano Res2023;16:4277-88

[101]

Shen Y.Structural studies of amorphous and crystallized tungsten nitride thin films by EFED, XRD and TEM.Appl Surf Sci2000;167:59-68

[102]

Zhan C,Hu X.Mechanical property enhancement of NbTiZr refractory medium-entropy alloys due to Si-induced crystalline-to-amorphous transitions.Surf Coat Technol2022;433:128144

[103]

Dong C,Liu JY.Modest oxygen-defective amorphous manganese-based nanoparticle mullite with superior overall electrocatalytic performance for oxygen reduction reaction.Small2017;13:1603903

[104]

Pan T,Shen Y.Amorphous chromium oxide with hollow morphology for nitrogen electrochemical reduction under ambient conditions.ACS Appl Mater Interfaces2022;14:14474-81

[105]

Meng X,Liu Y,Li K.Amorphous Fe-Mo-O nanostructures for catalytic water oxidation.ACS Appl Nano Mater2022;5:9427-34

[106]

Xu L,Deng D.Cu nanoclusters/FeN4 amorphous composites with dual active sites in n-doped graphene for high-performance Zn-Air batteries.ACS Appl Mater Interfaces2020;12:31340-50

[107]

Chen C,Wu Y.Oxidation of metallic Cu by supercritical CO2 and control synthesis of amorphous nano-metal catalysts for CO2 electroreduction.Nat Commun2023;14:1092 PMCID:PMC9968285

[108]

Kang J,Hu Q,Liu LM.Recent progress of amorphous nanomaterials.Chem Rev2023;123:8859-941

[109]

Banko L,Pedersen JK.Unravelling composition-activity-stability trends in high entropy alloy electrocatalysts by using a data-guided combinatorial synthesis strategy and computational modeling.Adv Energy Mater2022;12:2103312

[110]

Huang J,Chen J,Peng X.The enhancement of selectivity and activity for two-electron oxygen reduction reaction by tuned oxygen defects on amorphous hydroxide catalysts.CCS Chem2022;4:566-83

[111]

Fang Z,Lu J,Deng J. DFT study of electron transfer between B and Ni in Ni-B amorphous alloy. Acta Chimica Sinica 1999;57:894-900. Available from: https://sioc-journal.cn/Jwk_hxxb/EN/Y1999/V57/I8/894 [Last accessed on 9 Apr 2024]

[112]

He Y,Zhu C.Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production.Nat Catal2022;5:212-21

[113]

Zhang D,Lu H.Unlocking the performance of ternary metal (hydro)oxide amorphous catalysts via data-driven active-site engineering.Energy Environ Sci2023;16:5065-75

[114]

Bui TS,Daiyan R.Defective metal oxides: lessons from CO2 RR and applications in NOxRR.Adv Mater2023;35:e2205814

[115]

Ye L,Zhang Y,Jing X.A self-supporting electrode with in-situ partial transformation of Fe-MOF into amorphous NiFe-LDH for efficient oxygen evolution reaction.Appl Surf Sci2021;556:149781

[116]

Zhao J,Ma H.Synthesis of self-supported amorphous CoMoO4 nanowire array for highly efficient hydrogen evolution reaction.ACS Sustain Chem Eng2017;5:10093-8

[117]

Yang P,Liu Z.Towards activation of amorphous MoSx via Cobalt doping for enhanced electrocatalytic hydrogen evolution reaction.Int J Hydrogen Energy2018;43:23109-17

[118]

Wang D,Wu Z.Amorphous phosphorus-doped MoS2 catalyst for efficient hydrogen evolution reaction.Nanotechnology2019;30:205401

[119]

Ren H,Du C.Amorphous Fe-Ni-P-B-O nanocages as efficient electrocatalysts for oxygen evolution reaction.ACS Nano2019;13:12969-79

[120]

Dhandapani H, Madhu R, De A, Salem MA, Ramesh Babu B, Kundu S. Tuning the surface electronic structure of amorphous NiWO4 by doping Fe as an electrocatalyst for OER.Inorg Chem2023;62:11817-28

[121]

Sun J,Shao Z.A facile strategy to construct amorphous spinel-based electrocatalysts with massive oxygen vacancies using ionic liquid dopant.Adv Energy Mater2018;8:1800980

[122]

Gao YQ,Yang GW.Amorphous mixed-metal hydroxide nanostructures for advanced water oxidation catalysts.Nanoscale2016;8:5015-23

[123]

Yang M,Yuan J.Oxygen vacancies and interface engineering on amorphous/crystalline CrOx-Ni3 N heterostructures toward high-durability and kinetically accelerated water splitting.Small2022;18:e2106554

[124]

Gao L,Sun X.CoFeOx(OH)y/CoOx(OH)y core/shell structure with amorphous interface as an advanced catalyst for electrocatalytic water splitting.Electrochim Acta2020;341:136038

[125]

Sun A,Wang Z.Interface engineering on super-hydrophilic amorphous/crystalline NiFe-based hydroxide/selenide heterostructure nanoflowers for accelerated industrial overall water splitting at high current density.J Colloid Interface Sci2023;650:573-81

[126]

Zhang HM,Gao YH.Amorphous high-entropy phosphoxides for efficient overall alkaline water/seawater splitting.J Mater Sci Technol2023;173:1-10

[127]

Cheng C,Wang Y.Amorphous Sn(HPO4)2-derived phosphorus-modified Sn/SnO core/shell catalyst for efficient CO2 electroreduction to formate.J Energy Chem2023;81:125-31

[128]

Smith G,Matyjaszczyk M.Metallic glasses: new catalyst systems.Stud Surf Sci Catal1981;7:355-63

[129]

Kreysa G.Electrocatalysis by amorphous metals of hydrogen and oxygen evolution in alkaline solution.J Electroanal Chem Interfacial Electrochem1986;201:61-83

[130]

Lian K,Kirk D.Electrochemical and surface characterization of electrocatalytically active amorphous Ni Co alloys.Electrochim Acta1992;37:2029-41

[131]

Deng J,Wang W.Progress in design of new amorphous alloy catalysts.Catal Today1999;51:113-25

[132]

Janik-czachor M,Molnar A.Electrochemical modification of Cu-Zr amorphous alloys for catalysts.Electrochim Acta2000;45:3295-304

[133]

Li H.Liquid phase benzene hydrogenation to cyclohexane over modified Ni-P amorphous catalysts.Mater Lett2001;51:101-7

[134]

Ramos-sánchez G,Solorza-feria O.Amorphous Ni59Nb40PtxM1-x (M=Ru,Sn) electrocatalysts for oxygen reduction reaction.J Non-Cryst Solids2008;354:5165-8

[135]

Fernandes R,Miotello A.Efficient catalytic properties of Co-Ni-P-B catalyst powders for hydrogen generation by hydrolysis of alkaline solution of NaBH4.Int J Hydrogen Energy2009;34:2893-900

[136]

Fugane K,Ou DR.Activity of oxygen reduction reaction on small amount of amorphous CeOx promoted Pt cathode for fuel cell application.Electrochim Acta2011;56:3874-83

[137]

Cavalca F,Aghion S.Nature and distribution of stable subsurface oxygen in copper electrodes during electrochemical CO2 reduction.J Phys Chem C2017;121:25003-9

[138]

Lv CD,Chen G.An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions.Angew Chem Int Ed2018;130:6181-4

[139]

Tielens F,Handzlik J.Characterization of amorphous silica based catalysts using DFT computational methods.Catal Today2020;354:3-18

[140]

Liu H,Xin J.Free-standing nanoporous NiMnFeMo alloy: an efficient non-precious metal electrocatalyst for water splitting.Chem Eng J2021;404:126530

[141]

Pu Z,Cheng R.Single-atom catalysts for electrochemical hydrogen evolution reaction: recent advances and future perspectives.Nanomicro Lett2020;12:21 PMCID:PMC7770676

[142]

Zheng X,Dou S.Non-carbon-supported single-atom site catalysts for electrocatalysis.Energy Environ Sci2021;14:2809-58

[143]

Al-naggar AH,Kim J.Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts.Coord Chem Rev2023;474:214864

[144]

Xing M,Zeng X,Liu Z.Amorphous/Crystalline Rh(OH)3/CoP heterostructure with hydrophilicity/aerophobicity feature for all-pH hydrogen evolution reactions.Adv Energy Mater2023;13:2302376

[145]

Cao D,Tang Y.Amorphous manganese-cobalt nanosheets as efficient catalysts for hydrogen evolution reaction (HER).Catal Surv Asia2021;25:437-44

[146]

Xia Y,Wang H,Zhang F.Amorphous RuS2 electrocatalyst with optimized active sites for hydrogen evolution.Nanotechnology2020;31:145401

[147]

Zhang X,Wen B,Diao D.Machine learning accelerated DFT research on platinum-modified amorphous alloy surface catalysts.Chin Chem Lett2023;34:107833

[148]

Zhang J,Hao H.Construction of amorphous Fe0.95S1.05 nanorods with high electrocatalytic activity for enhanced hydrogen evolution reaction.Electrochim Acta2022;402:139554

[149]

Wu G,Cai J.In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity.Nat Commun2022;13:4200 PMCID:PMC9300738

[150]

Chunduri A,Gupta S.Exploring the role of multi-catalytic sites in an amorphous Co-W-B electrocatalyst for hydrogen and oxygen evolution reactions.ACS Appl Energy Mater2023;6:4630-41

[151]

Shao G,Miao F,Li Y.Improved catalytic efficiency and stability by surface activation in Fe-based amorphous alloys for hydrogen evolution reaction in acidic electrolyte.Electrochim Acta2021;390:138815

[152]

Yu J,Li L,Wang X.Morphological and structural engineering in amorphous Cu2MoS4 nanocages for remarkable electrocatalytic hydrogen evolution.Sci China Mater2019;62:1275-84

[153]

Zhao L,Dong T.Laser synthesis of amorphous CoSx nanospheres for efficient hydrogen evolution and nitrogen reduction reactions.J Mater Chem A2022;10:20071-9

[154]

Lu W,Wei F.In-situ transformed Ni, S-Codoped CoO from amorphous Co-Ni sulfide as an efficient electrocatalyst for hydrogen evolution in alkaline media.ACS Sustain Chem Eng2019;7:12501-9

[155]

Hu M,Yu S.Amorphous MoS2 decorated Ni3S2 with a core-shell structure of urchin-like on nickel-foam efficient hydrogen evolution in acidic and alkaline media.Small2024;20:e2305948

[156]

Ge Y,Huang B.Synthesis of amorphous Pd-based nanocatalysts for efficient alcoholysis of styrene oxide and electrochemical hydrogen evolution.Nano Res2023;16:4650-5

[157]

Bodhankar PM,Kumar P.Nanostructured metal phosphide based catalysts for electrochemical water splitting: a review.Small2022;18:e2107572

[158]

Jamesh M.Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting - a review.J Power Sources2018;400:31-68

[159]

Li X,Hu Q.Amorphous NiFe oxide-based nanoreactors for efficient electrocatalytic water oxidation.Angew Chem Int Ed2023;62:e202300478

[160]

Liu S,Li L.A top-down strategy for amorphization of hydroxyl compounds for electrocatalytic oxygen evolution.Nat Commun2022;13:1187 PMCID:PMC8897429

[161]

Liu X,Zhang S.Revealing the effect of crystallinity and oxygen vacancies of Fe-Co phosphate on oxygen evolution for high-current water splitting.J Colloid Interface Sci2024;653:1379-87

[162]

Xiao L,Li Z.Amorphous FeNiNbPC nanoprous structure for efficient and stable electrochemical oxygen evolution.J Colloid Interface Sci2022;608:1973-82

[163]

Zheng Y,Li X.Synthesis of amorphous trimetallic PdCuNiP nanoparticles for enhanced OER.Front Chem2023;11:1122333 PMCID:PMC9922906

[164]

Zhao C,Zhang R.Surface reconstruction of La0.8Sr0.2Co0.8Fe0.2O3-δ for superimposed OER performance.ACS Appl Mater Interfaces2019;11:47858-67

[165]

Kalathil S,Saikaly PE.Synthesis of an amorphous Geobacter -manganese oxide biohybrid as an efficient water oxidation catalyst.Green Chem2020;22:5610-8

[166]

Gou W,Tan X.Highly active and stable amorphous IrOx/CeO2 nanowires for acidic oxygen evolution.Nano Energy2022;104:107960

[167]

Zhang L,Ye F.Vacancies boosting strategy enabling enhanced oxygen evolution activity in a library of novel amorphous selenite electrocatalysts.Appl Catal B Environ2021;284:119758

[168]

Wang S,Zheng T.Cerium decorated amorphous ternary Ni-Ce-B catalyst for enhanced electrocatalytic water oxidation.Surf Interfaces2021;26:101447

[169]

Li Z,Huang J.Structure engineering of amorphous P-CoS hollow electrocatalysts for promoted oxygen evolution reaction.Int J Hydrogen Energy2022;47:15189-97

[170]

Kim C,Beermann V,Möller T.Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR).Adv Mater2019;31:e1805617

[171]

Tian J,Liu P.Recent advances of amorphous-phase-engineered metal-based catalysts for boosted electrocatalysis.J Mater Sci Technol2022;127:1-18

[172]

Biemolt J,Yan N.Understanding the roles of amorphous domains and oxygen-containing groups of nitrogen-doped carbon in oxygen reduction catalysis: toward superior activity.Inorg Chem Front2020;7:177-85

[173]

Liu L,Li R,Zhang H.Subnano amorphous Fe-based clusters with high mass activity for efficient electrocatalytic oxygen reduction reaction.ACS Appl Mater Interfaces2019;11:41432-9

[174]

Poon KC,Vo TD.Newly developed stepwise electroless deposition enables a remarkably facile synthesis of highly active and stable amorphous Pd nanoparticle electrocatalysts for oxygen reduction reaction.J Am Chem Soc2014;136:5217-20

[175]

Bai F,Xu L.Improved ORR/OER bifunctional catalytic performance of amorphous manganese oxides prepared by photochemical metal-organic deposition.RSC Adv2022;12:2408-15 PMCID:PMC8979087

[176]

Wang Y,Yuan H,Hu T.Strong electronic interaction between amorphous MnO2 nanosheets and ultrafine Pd nanoparticles toward enhanced oxygen reduction and ethylene glycol oxidation reactions.Adv Funct Mater2023;33:2211909

[177]

Li W,Bai S.Inspired electrocatalytic performance by unique amorphous PdCu nanoparticles on black phosphorus.Electrochim Acta2023;446:142082

[178]

Li Q,Zhao X.Short-range amorphous carbon nanosheets for oxygen reduction electrocatalysis.Nanoscale Adv2020;2:5769-76 PMCID:PMC9418123

[179]

Pan D,Zhou L,Guo Z.Self-template construction of 2D amorphous N-doped CoFe-mesoporous phosphate microsheets for zinc-air batteries.J Power Sources2021;498:229859

[180]

Song S,Deng Y.TiC supported amorphous MnOx as highly efficient bifunctional electrocatalyst for corrosion resistant oxygen electrode of Zn-air batteries.Nano Energy2020;67:104208

[181]

Moloudi M,Rahmanifar MS.Layered double hydroxide templated synthesis of amorphous NiCoFeB as a multifunctional electrocatalyst for overall water splitting and rechargeable zinc-air batteries.Adv Energy Mater2023;13:2203002

[182]

Jin D,Kim IY,Kim MH.Impact of controlling the crystallinity on bifunctional electrocatalytic performances toward methanol oxidation and oxygen reduction in binary Pd-Cr solid solution.J Mater Chem A2023;11:16243-54

[183]

Yao Y,Li R.Sn-based electrocatalysts for electrochemical CO2 reduction.Chem Commun2023;59:9017-28

[184]

Han H,Park S.Plasma-induced oxygen vacancies in amorphous MnOx boost catalytic performance for electrochemical CO2 reduction.Nano Energy2021;79:105492

[185]

Xiong Y,Wu M.Rapid synthesis of amorphous bimetallic copper-bismuth electrocatalysts for efficient electrochemical CO2 reduction to formate in a wide potential window.J CO2 Util2021;51:101621

[186]

Duan YX,Liu KH.Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high faradaic efficiencies.Adv Mater2018;30:e1706194

[187]

Zhang J,Shao Q,Huang X.Oxygen vacancies in amorphous InOx nanoribbons enhance CO2 adsorption and activation for CO2 electroreduction.Angew Chem Int Ed2019;58:5609-13

[188]

Wu Y,Cao S.Beyond d orbits: steering the selectivity of electrochemical CO2 reduction via hybridized sp band of sulfur-incorporated porous Cd architectures with dual collaborative sites.Adv Energy Mater2020;10:2002499

[189]

Zhou JH,Zhou L.Boosting electrochemical reduction of CO2 at a low overpotential by amorphous Ag-Bi-S-O decorated Bi0 nanocrystals.Angew Chem Int Ed2019;58:14197-201

[190]

Dong Z,Xu GR.Universal synthesized strategy for amorphous Pd-Based nanosheets boosting ambient ammonia electrosynthesis.Small Methods2023;7:e2201225

[191]

Xu W,Ma C,Liu Y.Amorphous NiSb2O6-x nanofiber: a d-/p-block Janus electrocatalyst toward efficient NH3 synthesis through boosted N2 adsorption and activation.Appl Catal B Environ2022;308:121225

[192]

Wang Y,Zhang J.Tuning morphology and electronic structure of amorphous NiFeB nanosheets for enhanced electrocatalytic N2 reduction.ACS Appl Energy Mater2020;3:9516-22

[193]

Chu K,Li Q,Tian Y.Amorphous MoS3 enriched with sulfur vacancies for efficient electrocatalytic nitrogen reduction.J Energy Chem2021;53:132-8

[194]

Xiao L,Li Z.Amorphous CoMoO4 with nanoporous structures for electrochemical ammonia synthesis under ambient conditions.ACS Sustain Chem Eng2020;8:19072-83

[195]

Fang Z,Qian Y.Gel-derived amorphous bismuth-nickel alloy promotes electrocatalytic nitrogen fixation via optimizing nitrogen adsorption and activation.Angew Chem Int Ed2021;60:4275-81

AI Summary AI Mindmap
PDF

699

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/