First-principles study on the negative/zero area compressibility in Ag3BO3 with “wine-rack” architecture

Xingyu Zhang , Youquan Liu , Naizheng Wang , Xingxing Jiang , Zheshuai Lin

Microstructures ›› 2024, Vol. 4 ›› Issue (1) : 2024002

PDF
Microstructures ›› 2024, Vol. 4 ›› Issue (1) :2024002 DOI: 10.20517/microstructures.2023.63
Research Article

First-principles study on the negative/zero area compressibility in Ag3BO3 with “wine-rack” architecture

Author information +
History +
PDF

Abstract

Materials with negative/zero area compressibility (NAC or ZAC), which expand or keep constant along two directions under hydrostatic pressure, are very rare but of great scientific and engineering merits. Here, we investigate “wine-rack” architecture, which is the most prevailing for the pressure-expansion effect in materials, and identify that two allotropes (Ag3BO3-I and -II) of Ag3BO3 have the ZAC and NAC effects, respectively, by the first-principles calculations. Structural analysis discloses that the competition between the contraction effect from the bond length/angle shrinkage and the expansion effect from the angle closing between O-Ag-O bars and the (a, b) plane dominates the occurrence of ZAC/NAC, and the framework openness governs the competing balance in this system. This work deepens the understanding of “wine-rack” models and enriches the NAC/ZAC family.

Keywords

Negative area compressibility / zero area compressibility / wine-rack / borate

Cite this article

Download citation ▾
Xingyu Zhang, Youquan Liu, Naizheng Wang, Xingxing Jiang, Zheshuai Lin. First-principles study on the negative/zero area compressibility in Ag3BO3 with “wine-rack” architecture. Microstructures, 2024, 4(1): 2024002 DOI:10.20517/microstructures.2023.63

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Grima JN.Mechanical metamaterials: materials that push back.Nat Mater2012;11:565-6

[2]

Baughman RH.Auxetic materials: avoiding the shrink.Nature2003;425:667

[3]

Baughman RH,Cui C.Materials with negative compressibilities in one or more dimensions.Science1998;279:1522-4

[4]

Cairns AB.Negative linear compressibility.Phys Chem Chem Phys2015;17:20449-65

[5]

Jiang X,Dong L.Anomalous mechanical materials squeezing three-dimensional volume compressibility into one dimension.Nat Commun2020;11:5593 PMCID:PMC7644688

[6]

Lu Y,Huang E.Persistent negative compressibility coupled to optical modulation in empty-perovskite TiOF2.J Phys Chem C2021;125:8869-75

[7]

Yu Y,Chen Y,Wang K.Extraordinarily persistent zero linear compressibility in metal-organic framework MIL-122(In).ACS Mater Lett2020;2:519-23

[8]

Rejnhardt P,Katrusiak A.Deuteration-enhanced negative thermal expansion and negative area compressibility in a three-dimensional hydrogen bonded network.Chem Mater2023;35:5160-7

[9]

Cairns AB,Levelut C.Giant negative linear compressibility in zinc dicyanoaurate.Nat Mater2013;12:212-6

[10]

Zhao Y,Pei C.Colossal negative linear compressibility in porous organic salts.J Am Chem Soc2020;142:3593-9

[11]

Jiang D,Song H.Intrinsic zero-linear and zero-area compressibilities over an ultrawide pressure range within a gear-spring structure.CCS Chem2022;4:3246-53

[12]

Zeng Q,Zou B.Near zero area compressibility in a perovskite-like metal-organic frameworks [C(NH2)3][Cd(HCOO)3].ACS Appl Mater Interfaces2018;10:23481-4

[13]

Sun ME,Wang F.Chirality-dependent structural transformation in chiral 2D perovskites under high pressure.J Am Chem Soc2023;145:8908-16

[14]

Qiu W,Li C,Li Y.Theoretical investigation of zero linear compressibility on metal squarates MC4O4 (M = Pb and Ba).J Phys Chem C2023;127:9957-63

[15]

Mączka M,Ratajczyk P.Pressure-driven phase transition in two-dimensional perovskite MHy2PbBr4.Chem Mater2022;34:7867-77

[16]

Jiang X,Kang L.Isotropic negative area compressibility over large pressure range in potassium beryllium fluoroborate and its potential applications in deep ultraviolet region.Adv Mater2015;27:4851-7

[17]

Zhang Y,Du M.Negative volume compressibility in Sc3N@C80-cubane cocrystal with charge transfer.J Am Chem Soc2020;142:7584-90

[18]

Tortora M,Lowe AR.Giant negative compressibility by liquid intrusion into superhydrophobic flexible nanoporous frameworks.Nano Lett2021;21:2848-53 PMCID:PMC10424282

[19]

Occelli F,LeToullec R.Properties of diamond under hydrostatic pressures up to 140 GPa.Nat Mater2003;2:151-4

[20]

Jiang D,Guo Y.Reentrant negative linear compressibility in MIL-53(Al) over an ultrawide pressure range.Chem Mater2022;34:2764-70

[21]

Ghosh PS.Negative linear compressibility in organic-inorganic hybrid perovskite [NH2NH3]X(HCOO)3 (X = Mn, Fe, Co).J Phys Chem Lett2022;13:3143-9

[22]

Hodgson SA,Hunt SJ.Negative area compressibility in silver(I) tricyanomethanide.Chem Commun2014;50:5264-6

[23]

Goodwin AL,Tucker MG.Large negative linear compressibility of Ag3[Co(CN)6].Proc Natl Acad Sci USA2008;105:18708-13 PMCID:PMC2596217

[24]

Kamali K,Ravindran TR,Sairam TN.Linear compressibility and thermal expansion of KMn[Ag(CN)2]3 studied by raman spectroscopy and first-principles calculations.J Phys Chem C2013;117:25704-13

[25]

Cai W.Conformationally assisted negative area compression in methyl benzoate.J Phys Chem C2013;117:21460-5

[26]

Jiang X,Molokeev MS.Zero linear compressibility in nondense borates with a “Lu-Ban Stool”-like structure.Adv Mater2018;30:e1801313

[27]

Clark SJ,Pickard CJ.First principles methods using CASTEP.Z Kristallogr2005;220:567-70

[28]

Baroni S,Dal Corso A.Phonons and related crystal properties from density-functional perturbation theory.Rev Mod Phys2001;73:515

[29]

Perdew JP.Self-interaction correction to density-functional approximations for many-electron systems.Phys Rev B1981;23:5048

[30]

Ceperley DM.Ground-state of the electron-gas by a stochastic method.Phys Rev Lett1980;45:566

[31]

Vanderbilt D.Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.Phys Rev B Condens Matter1990;41:7892

[32]

Pfrommer BG,Louie SG.Relaxation of crystals with the quasi-newton method.J Comput Phys1997;131:233-40

[33]

Cliffe MJ.PASCal: a principal axis strain calculator for thermal expansion and compressibility determination.J Appl Cryst2012;45:1321-9

[34]

Jansen M.Silber(I)-orthoborat.Z Anorg Allg Chem1981;477:85-9

[35]

Jansen M.Ag3BO3-II, eine neue form von silber(I)-orthoborat.Z Anorg Allg Chem1982;489:42-6

[36]

Serra-Crespo P,Stavitski E.Experimental evidence of negative linear compressibility in the MIL-53 metal-organic framework family.CrystEngComm2015;17:276-80 PMCID:PMC4338503

AI Summary AI Mindmap
PDF

74

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/