La(Fe,Si/Al)13-based materials with exceptional magnetic functionalities: a review

Feixiang Long , Yuzhu Song , Jun Chen

Microstructures ›› 2024, Vol. 4 ›› Issue (1) : 2024011

PDF
Microstructures ›› 2024, Vol. 4 ›› Issue (1) :2024011 DOI: 10.20517/microstructures.2023.58
Review

La(Fe,Si/Al)13-based materials with exceptional magnetic functionalities: a review

Author information +
History +
PDF

Abstract

The field of magnetic functional materials continues to garner significant attention due to its research and diverse applications, such as magnetic storage and spintronics. Among these, La(Fe,Si/Al)13-based materials exhibit abundant magnetic properties and emerge as highly captivating subjects with immense potential. This review provides an overview of the diverse magnetic structures and itinerant electron metamagnetic transition observed in La(Fe,Si/Al)13-based materials. The transformation of different magnetic configurations elicits the phenomena such as negative thermal expansion, magnetostriction, magnetocaloric effect, and barocaloric effect. In addition, the pivotal role of spin and lattice coupling in these phenomena is revealed. The magnetic functionalities of La(Fe,Si/Al)13-based materials can be controlled through adjustments of magnetic exchange interactions. Key methods, including chemical substitution, external field application, and interstitial atom insertion, enable precise modulation of these functionalities. This review not only provides valuable insights into the design and development of magnetic functional materials but also offers significant contributions to our understanding of the underlying mechanisms governing their magnetic behaviors.

Keywords

La(Fe,Si/Al)13 / spin-lattice coupling / magnetic functionalities / magnetic structures

Cite this article

Download citation ▾
Feixiang Long, Yuzhu Song, Jun Chen. La(Fe,Si/Al)13-based materials with exceptional magnetic functionalities: a review. Microstructures, 2024, 4(1): 2024011 DOI:10.20517/microstructures.2023.58

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Song Y,Deng S,Chen J.Negative thermal expansion in magnetic materials.Prog Mater Sci2021;121:100835

[2]

Song Y,Liu X.Zero thermal expansion in magnetic and metallic Tb(Co,Fe)2 intermetallic compounds.J Am Chem Soc2018;140:602-5

[3]

Song Y,Zheng X.A new method to enhance the magnetocaloric effect in (Sc,Ti)Fe2 via magnetic phase separation.J Mater Sci Technol2023;147:102-11

[4]

Stern-Taulats E,Lloveras P.Barocaloric and magnetocaloric effects in Fe49Rh51.Phys Rev B2014;89:214105

[5]

Aznar A,Kim JY.Giant and reversible inverse barocaloric effects near room temperature in ferromagnetic MnCoGeB0.03.Adv Mater2019;31:e1903577

[6]

Jungwirth T,Wadley P.Antiferromagnetic spintronics.Nat Nanotechnol2016;11:231-41

[7]

Awschalom DD.Challenges for semiconductor spintronics.Nat Phys2007;3:153-9

[8]

Palstra TTM,Nieuwenhuys GJ,Buschow KHJ.Study of the critical behaviour of the magnetization and electrical resistivity in cubic La(Fe, Si)13 compounds.J Magn Magn Mater1983;36:290-6

[9]

Palstra TTM,Nieuwenhuys GJ,Boer FRD.Metamagnetic transitions in cubic La(FexAl1-x)13 intermetallic.J Phys F Met Phys1984;14:1961-6

[10]

Yamada H,Shimizu M.Electronic structure and magnetic properties of the cubic Laves phase compounds ACo2 (A=Sc, Ti, Zr, Lu and Hf) and ScNi2.J Phys F Met Phys1985;15:169-80

[11]

Paul-Boncour V, Bessais L. Tuning the magnetocaloric properties of the La(Fe,Si)13 compounds by chemical substitution and light element insertion.Magnetochemistry2021;7:13

[12]

Liu J,Zhang M.A systematic study of the microstructure, phase formation and magnetocaloric properties in off-stoichiometric La-Fe-Si alloys.Acta Mater2016;118:44-53

[13]

Niitsu K.Phase equilibria in the Fe-La-Si ternary system.Intermetallics2012;20:160-9

[14]

Raghavan V.Fe-La-Si (iron-lanthanum-silicon).J Phase Equilib Diff2001;22:158-9

[15]

Song Y,Zhang J.The critical role of spin rotation in the giant magnetostriction of La(Fe,Al)13.Sci China Mater2021;64:1238-45

[16]

Song Y,Liu Y.Magnetic-field-induced strong negative thermal expansion in La(Fe,Al)13.Chem Mater2020;32:7535-41

[17]

Shen BG,Dong QY.Magnetic properties and magnetocaloric effects in NaZn13-type La(Fe,Al)13-based compounds.Chin Phys B2013;22:017502

[18]

de Medeiros Jr. LG, de Oliveira NA. Magnetocaloric effect in La(Fex,Si1-x)13 doped with hydrogen and under external pressure.J Alloys Compd2006;424:41-5

[19]

Li S,Zhao Y,Han Y.Zero thermal expansion achieved by an electrolytic hydriding method in La(Fe,Si)13 compounds.Adv Funct Mater2017;27:1604195

[20]

Rosca M,Fruchart D.Neutron diffraction study of LaFe11.31Si1.69 and LaFe11.31Si1.69H1.45 compounds.J Alloys Compd2010;490:50-5

[21]

Phejar M,Bessais L.Investigation on structural and magnetocaloric properties of LaFe13-xSix(H,C)y compounds.J Solid State Chem2016;233:95-102

[22]

Niitsu K,Fujita A.Microstructure and magnetic properties of as-quenched cubic and tetragonal La(Fe1-xSix)13 compounds.J Alloys Compd2013;578:220-7

[23]

Zhao Y,Li S.Effect of cobalt doping on the structural, magnetic and abnormal thermal expansion properties of NaZn13-type La(Fe1−xCox)11.4Al1.6 compounds.Phys Chem Chem Phys2016;18:20276-80

[24]

Liu J,Wang J.Realization of zero thermal expansion in La(Fe,Si)13-based system with high mechanical stability.Mater Des2018;148:71-7

[25]

Li W,Wang W.Low-temperature negative thermal expansion property of Mn doped La(Fe,Si)13 compounds.J Alloys Compd2015;628:308-10

[26]

Yamada H.Metamagnetic transition and susceptibility maximum in an itinerant-electron system.Phys Rev B Condens Matter1993;47:11211-9

[27]

Guillaume CE.Recherches sur les aciers au nickel.J Phys Theor Appl1898;7:262-74

[28]

Yokoyama T.Thermal expansion of FeNi Invar and zinc-blende CdTe from the view point of local structure.Microstructures2021;1:2021003

[29]

Sun Y,Ren Y.Structure, magnetism and low thermal expansion in Tb1-xErxCo2Mny intermetallic compounds.Microstructures2023;3:2023028

[30]

Zhou H,Huang R.Tunable negative thermal expansion in La(Fe, Si)13/resin composites with high mechanical property and long-term cycle stability.Microstructures2022;2:2022018

[31]

Huang R,Fan W.Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds.J Am Chem Soc2013;135:11469-72

[32]

Li W,Wang W.Abnormal thermal expansion properties of cubic NaZn13-type La(Fe,Al)13 compounds.Phys Chem Chem Phys2015;17:5556-60

[33]

Pang X,Shi N,Zhou C.Design of zero thermal expansion and high thermal conductivity in machinable xLFCS/Cu metal matrix composites.Compos Part B Eng2022;238:109883

[34]

Hunter D,Wang K.Giant magnetostriction in annealed Co1-xFex thin-films.Nat Commun2011;2:518

[35]

Chopra HD.Non-joulian magnetostriction.Nature2015;521:340-3

[36]

Lee EW.Magnetostriction and magnetomechanical effects.Rep Prog Phys1955;18:184-229

[37]

Fujita A,Fukamichi K.Itinerant electron metamagnetic transition in La(FexSi1-x)13 intermetallic compounds.J Appl Phys1999;85:4756-8

[38]

Fujieda S,Fukamichi K,Iijima Y.Giant isotropic magnetostriction of itinerant-electron metamagnetic La(Fe0.88Si0.12)13Hy compounds.Appl Phys Lett2001;79:653-5

[39]

Ghorbani Zavareh M,Skokov KP.Direct measurement of the magnetocaloric effect in La(Fe, Si, Co)13 compounds in pulsed magnetic fields.Phys Rev Appl2017;8:014037

[40]

Abdulkadirova NZ,Kamilov KI.Magnetostriction and magnetocaloric properties of LaFe11.1Mn0.1Co0.7Si1.1 alloy: direct and indirect measurements.J Alloys Compd2022;929:167348

[41]

Clark AE.Giant room-temperature magnetostrictions in TbFe2 and DyFe2.Phys Rev B1972;5:3642-4

[42]

Franco V,Ipus J,Moreno-ramírez L.Magnetocaloric effect: from materials research to refrigeration devices.Prog Mater Sci2018;93:112-232

[43]

Reis MS.Magnetocaloric and barocaloric effects of metal complexes for solid state cooling: review, trends and perspectives.Coord Chem Rev2020;417:213357

[44]

Shen BG,Hu FX,Cheng ZH.Recent progress in exploring magnetocaloric materials.Adv Mater2009;21:4545-64

[45]

Hu FX,Sun JR,Zhang XX.Magnetic entropy change in La(Fe0.98Co0.02)11.7Al1.3.J Phys Condens Matter2000;12:L691

[46]

Hu FX,Sun JR.Great magnetic entropy change in La(Fe, M)13 (M = Si, Al) with Co doping.Chin Phys2000;9:550

[47]

Fujieda S,Fukamichi K.Large magnetocaloric effects in NaZn13-type La(FexSi1-x)13 compounds and their hydrides composed of icosahedral clusters.Sci Technol Adv Mater2003;4:339-46

[48]

Zhou HB,Hu FX.Emergence of Invar effect with excellent mechanical property by electronic structure modulation in LaFe11.6-xCoxSi1.4 magnetocaloric materials.Acta Mater2023;260:119312

[49]

Zhang H,Sun JR.Effects of interstitial H and/or C atoms on the magnetic and magnetocaloric properties of La(Fe, Si)13-based compounds.Sci China Phys Mech Astron2013;56:2302-11

[50]

Löwe K,Skokov K.The effect of the thermal decomposition reaction on the mechanical and magnetocaloric properties of La(Fe,Si,Co)13.Acta Mater2012;60:4268-76

[51]

Mayer C,Pierronnet M.Towards the large scale production of (La1-zCez)(Fe1-x-yMnySix)13Hn products for room temperature refrigeration.Phys Status Solidi C2014;11:1059-63

[52]

Moreno-Ramírez LM,Law JY.Tunable first order transition in La(Fe,Cr,Si)13 compounds: retaining magnetocaloric response despite a magnetic moment reduction.Acta Mater2019;175:406-14

[53]

Dong QY,Sun JR.Effect of Si doping on the magnetic properties and magnetic entropy changes in the LaFe11.4Al1.6 intermetallic compound.J Phys Condens Matter2008;20:135205

[54]

Zou JD, Shen BG, Gao B, Shen J, Sun JR. The magnetocaloric effect of LaFe11.6Si1.4, La0.8Nd0.2Fe11.5Si1.5, and Ni43Mn46Sn11 compounds in the vicinity of the first-order phase transition.Adv Mater2009;21:693-6

[55]

Liu GJ,Shen J.Determination of the entropy changes in the compounds with a first-order magnetic transition.Appl Phys Lett2007;90:032507

[56]

Lyubina J,Schultz L.Multiple metamagnetic transitions in the magnetic refrigerant La(Fe,Si)13Hx.Phys Rev Lett2008;101:177203

[57]

Mañosa L.Materials with giant mechanocaloric effects: cooling by strength.Adv Mater2017;29:1603607

[58]

Carvalho AMG,Usuda EO.Giant room-temperature barocaloric effects in PDMS rubber at low pressures.Eur Polym J2018;99:212-21

[59]

Li B,Ohira-Kawamura S.Colossal barocaloric effects in plastic crystals.Nature2019;567:506-10

[60]

Lloveras P,Barrio M.Colossal barocaloric effects near room temperature in plastic crystals of neopentylglycol.Nat Commun2019;10:1803 PMCID:PMC6472423

[61]

Lloveras P,Barrio M.Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate.Nat Commun2015;6:8801 PMCID:PMC4674762

[62]

Aznar A,Romanini M.Giant barocaloric effects over a wide temperature range in superionic conductor AgI.Nat Commun2017;8:1851 PMCID:PMC5705726

[63]

Matsunami D,Takenaka K.Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN.Nat Mater2015;14:73-8

[64]

Hao J,Wang JT.Large enhancement of magnetocaloric and barocaloric effects by hydrostatic pressure in La(Fe0.92Co0.08)11.9Si1.1 with a NaZn13-type structure.Chem Mater2020;32:1807-18

[65]

Mañosa L,Planes A.Inverse barocaloric effect in the giant magnetocaloric La-Fe-Si-Co compound.Nat Commun2011;2:595

[66]

Liu Y,Liang F.Large barocaloric effect in intermetallic La1.2Ce0.8Fe11Si2H1.86 materials driven by low pressure.NPG Asia Mater2022;14:30

[67]

Li T,Qi H.High-temperature ferroic glassy states in SrTiO3-based thin films.Phys Rev Lett2023;131:246801

[68]

Gokana MR,Motora KG,Yen WT.Effects of patterned electrode on near infrared light-triggered cesium tungsten bronze/poly(vinylidene)fluoride nanocomposite-based pyroelectric nanogenerator for energy harvesting.J Power Sources2022;536:231524

[69]

Rani GM,Ranjith KS.High roughness induced pearl necklace-like ZIF-67@PAN fiber-based triboelectric nanogenerators for mechanical energy harvesting.Adv Mater Technol2023;8:2300685

[70]

Rani GM,Motora KG,Jose CRM.Acoustic-electric conversion and triboelectric properties of nature-driven CF-CNT based triboelectric nanogenerator for mechanical and sound energy harvesting.Nano Energy2023;108:108211

AI Summary AI Mindmap
PDF

65

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/