Roadmap for ferroelectric domain wall memory

Jie Sun , Yiming Li , Di Hu , Bowen Shen , Boyang Zhang , Zilong Wang , Haiyue Tang , Anquan Jiang

Microstructures ›› 2024, Vol. 4 ›› Issue (1) : 2024007

PDF
Microstructures ›› 2024, Vol. 4 ›› Issue (1) :2024007 DOI: 10.20517/microstructures.2023.52
Perspective

Roadmap for ferroelectric domain wall memory

Author information +
History +
PDF

Abstract

Commercial nonvolatile Ferroelectric Random Access Memory employs a destructive readout scheme based on charge sensing, which limits its cell scalability in sizes above 100 nm. Ferroelectric domain walls are two-dimensional topological interfaces with thicknesses approaching the unit cell level between two antiparallel domains and exhibit electrical conductivity, distinguishing them from insulating matrices that are uniformly ordered. Recently, novel research has been devoted to utilizing this extraordinary interface for the application in nonvolatile memory with nanometer-sized scalability and low energy consumption. Here, we pay more attention to the development of the domain wall memory technologies in the future with challenges and opportunities to design planar and vertical arrays of the memory cells in the CMOS platform.

Keywords

Ferroelectric / domain wall / memory / 1T1R / crossbar

Cite this article

Download citation ▾
Jie Sun, Yiming Li, Di Hu, Bowen Shen, Boyang Zhang, Zilong Wang, Haiyue Tang, Anquan Jiang. Roadmap for ferroelectric domain wall memory. Microstructures, 2024, 4(1): 2024007 DOI:10.20517/microstructures.2023.52

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim KH,Olsson RH 3rd.Wurtzite and fluorite ferroelectric materials for electronic memory.Nat Nanotechnol2023;18:422-41

[2]

Ielmini D.In-memory computing with resistive switching devices.Nat Electron2018;1:333-43

[3]

Salahuddin S,Datta S.The era of hyper-scaling in electronics.Nat Electron2018;1:442-50

[4]

Meena JS,Chand U.Overview of emerging nonvolatile memory technologies.Nanoscale Res Lett2014;9:526 PMCID:PMC4182445

[5]

Mikolajick T,Slesazeck S.The Past, the present, and the future of ferroelectric memories.IEEE Trans Electron Devices2020;67:1434-43

[6]

Yu T,Zhao J.Hf0.5Zr0.5O2-based ferroelectric memristor with multilevel storage potential and artificial synaptic plasticity.Sci China Mater2021;64:727-38

[7]

Yan SA,Guo HX.Impact of total ionizing dose irradiation on Pt/SrBi2Ta2O9/HfTaO/Si memory capacitors.Appl Phys Lett2015;106:012901

[8]

Mcadams H,Blake T.A 64-Mb embedded FRAM utilizing a 130-nm 5LM Cu/FSG logic process.IEEE J Solid-State Circ2004;39:667-77

[9]

Park MH,Schroeder U.Binary ferroelectric oxides for future computing paradigms.MRS Bull2021;46:1071-9

[10]

Schenk T.A new generation of memory devices enabled by ferroelectric hafnia and zirconia. In: 2023 IEEE International Memory Workshop (IMW); 2023 May 21-24; Monterey, United States. New York: IEEE; 2023. pp. 1-11.

[11]

Valasek J.Piezo-electric and allied phenomena in rochelle salt.Phys Rev1921;17:475-81

[12]

Seidel J,He Q.Conduction at domain walls in oxide multiferroics.Nat Mater2009;8:229-34

[13]

Sun J,Sharma P.Ferroelectric domain wall memory and logic.ACS Appl Electron Mater2023;5:4692-703

[14]

Kroemer H.Quasi-electric fields and band offsets: teaching electrons new tricks.Int J Mod Phys B2002;16:677-97

[15]

Thong HC,Lu JT.Domain engineering in bulk ferroelectric ceramics via mesoscopic chemical inhomogeneity.Adv Sci2022;9:e2200998 PMCID:PMC9189658

[16]

Qiu C,Zhang N.Transparent ferroelectric crystals with ultrahigh piezoelectricity.Nature2020;577:350-4

[17]

Wada S,Kakemoto H,Kiguchi T.Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes.J Appl Phys2005;98:014109

[18]

Hu X,Zhu S.Nonlinear beam shaping in domain engineered ferroelectric crystals.Adv Mater2020;32:e1903775

[19]

Pan H,Ma J.Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering.Nat Commun2018;9:1813 PMCID:PMC5940880

[20]

Bassiri-gharb N,Hong E,Taylor DV.Domain wall contributions to the properties of piezoelectric thin films.J Electroceram2007;19:49-67

[21]

Das S,Stoica VA.Local negative permittivity and topological phase transition in polar skyrmions.Nat Mater2021;20:194-201

[22]

Liu L,Li Q.Giant domain wall conductivity in self-assembled BiFeO3 nanocrystals.Adv Funct Mater2021;31:2005876

[23]

Yin J,Tao H.Nanoscale bubble domains with polar topologies in bulk ferroelectrics.Nat Commun2021;12:3632 PMCID:PMC8206216

[24]

Liu Y,Ma J.Controllable electrical, magnetoelectric and optical properties of BiFeO3 via domain engineering.Prog Mater Sci2022;127:100943

[25]

Jang HW,Ortiz D.Strain-induced polarization rotation in epitaxial (001) BiFeO3 thin films.Phys Rev Lett2008;101:107602

[26]

Zhang JX,Trassin M.Microscopic origin of the giant ferroelectric polarization in tetragonal-like BiFeO3.Phys Rev Lett2011;107:147602

[27]

Zeches RJ,Zhang JX.A strain-driven morphotropic phase boundary in BiFeO3.Science2009;326:977-80

[28]

Zhang JX,He Q.Large field-induced strains in a lead-free piezoelectric material.Nat Nanotechnol2011;6:98-102

[29]

Jang HW,Baek S.Domain engineering for enhanced ferroelectric properties of epitaxial (001) BiFeO3 thin films.Adv Mater2009;21:817-23

[30]

Baek SH,Folkman CM.Ferroelastic switching for nanoscale non-volatile magnetoelectric devices.Nat Mater2010;9:309-14

[31]

Zhang D,Sharma P.Superior polarization retention through engineered domain wall pinning.Nat Commun2020;11:349 PMCID:PMC6969134

[32]

Tian G,Chen D.Topological domain states and magnetoelectric properties in multiferroic nanostructures.Natl Sci Rev2019;6:684-702 PMCID:PMC8291546

[33]

Jia Y,Chen F.Ion-cut lithium niobate on insulator technology: recent advances and perspectives.Appl Phys Rev2021;8:011307

[34]

Boes A,Langrock C.Lithium niobate photonics: unlocking the electromagnetic spectrum.Science2023;379:eabj4396

[35]

Tong L,Lin R.2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware.Science2021;373:1353-8

[36]

Schröder M,Thiessen A,Woike T.Conducting domain walls in lithium niobate single crystals.Adv Funct Mater2012;22:3936-44

[37]

Eliseev EA,Svechnikov GS,Shur VY.Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors.Phys Rev B2011;83:235313

[38]

Sun J,Zhang B.High-power LiNbO3 domain-wall nanodevices.ACS Appl Mater Interfaces2023;15:8691-8

[39]

Lu H,McConville JPV.Electrical tunability of domain wall conductivity in LiNbO3 thin films.Adv Mater2019;31:e1902890

[40]

Vul BM,Ivanchik II.Encountering domains in ferroelectrics.Ferroelectrics1973;6:29-31

[41]

Ma J,Zhang Q.Controllable conductive readout in self-assembled, topologically confined ferroelectric domain walls.Nat Nanotechnol2018;13:947-52

[42]

Yang W,Zhang Y.Quasi-one-dimensional metallic conduction channels in exotic ferroelectric topological defects.Nat Commun2021;12:1306 PMCID:PMC7910570

[43]

Yang W,Fan H.Nonvolatile ferroelectric-domain-wall memory embedded in a complex topological domain structure.Adv Mater2022;34:e2107711

[44]

Wang J,Huang H.Ferroelectric domain-wall logic units.Nat Commun2022;13:3255 PMCID:PMC9170692

[45]

Sharma P,Sando D.Nonvolatile ferroelectric domain wall memory.Sci Adv2017;3:e1700512 PMCID:PMC5482552

[46]

Jiang J,Chen ZH.Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories.Nat Mater2018;17:49-56

[47]

Jiang AQ,Lv P.Ferroelectric domain wall memory with embedded selector realized in LiNbO3 single crystals integrated on Si wafers.Nat Mater2020;19:1188-94

[48]

Lian J,Wang C,Jiang J.Sub 20 nm-node LiNbO3 domain-wall memory.Adv Mater Technol2021;6:2001219

[49]

Sun J,Ou Y.In-memory computing of multilevel ferroelectric domain wall diodes at LiNbO3 interfaces.Adv Funct Mater2022;32:2207418

[50]

Zhang W,Lian J,Jiang A.Erasable ferroelectric domain wall diodes.Chin Phys Lett2021;38:017701

[51]

Zhang WJ,Fan HC,Jiang AQ.Nonvolatile ferroelectric LiNbO3 domain wall crossbar memory.IEEE Electron Device Lett2023;44:420-3

[52]

Chen H,Chang C.Resistive random access memory (RRAM) technology: from material, device, selector, 3D integration to bottom-up fabrication.J Electroceram2017;39:21-38

[53]

Shi L,Tian B,Duan C.Research progress on solutions to the sneak path issue in memristor crossbar arrays.Nanoscale Adv2020;2:1811-27 PMCID:PMC9418872

[54]

Wang Z,Midya R.Threshold switching of Ag or Cu in dielectrics: materials, mechanism, and applications.Adv Funct Mater2018;28:1704862

[55]

Aluguri R.Notice of violation of IEEE publication principles: overview of selector devices for 3-D stackable cross point RRAM arrays.IEEE J Electron Devices Soc2016;4:294-306

[56]

Shim SI,Song J.Trends and future challenges of 3D NAND flash memory. In: 2023 IEEE International Memory Workshop (IMW); 2023 May 21-24; Monterey, USA. New York: IEEE; 2023. pp. 1-4.

[57]

Kim M,Park J.A 1Tb 3b/cell 8th generation 3D-NAND flash memory with 164MB/s write throughput and a 2.4Gb/s interface. In: 2022 IEEE International Solid-State Circuits Conference (ISSCC); 2022 Feb 20-26; San Francisco, USA. New York: IEEE; 2022. pp. 136-137.

[58]

Kim IJ.Ferroelectric transistors for memory and neuromorphic device applications.Adv Mater2023;35:e2206864

[59]

Sharma P,Colombo L.Roadmap for ferroelectric domain wall nanoelectronics.Adv Funct Mater2022;32:2110263

[60]

Morozovska AN,Li Y.Thermodynamics of nanodomain formation and breakdown in scanning probe microscopy: Landau-Ginzburg-Devonshire approach.Phys Rev B2009;80:214110

[61]

Alikin DO,Turygin AP,Kalinin SV.Tip-induced domain growth on the non-polar cuts of lithium niobate single-crystals.Appl Phys Lett2015;106:182902

[62]

Zhang WD,Jiang J.Polarization retention dependence of imprint time within LiNbO3 single-crystal domain wall devices.J Appl Phys2022;132:224103

[63]

Sun H,Wang Y.Nonvolatile ferroelectric domain wall memory integrated on silicon.Nat Commun2022;13:4332 PMCID:PMC9325887

[64]

Zhang D,Sharma P.Ferroelectric order in van der Waals layered materials.Nat Rev Mater2023;8:25-40

AI Summary AI Mindmap
PDF

66

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/