Sensing multiferroic states non-invasively using optical second harmonic generation

Jean-Yves Chauleau , Morgan Trassin

Microstructures ›› 2024, Vol. 4 ›› Issue (1) : 2024005

PDF
Microstructures ›› 2024, Vol. 4 ›› Issue (1) :2024005 DOI: 10.20517/microstructures.2023.50
Perspective

Sensing multiferroic states non-invasively using optical second harmonic generation

Author information +
History +
PDF

Abstract

The current boost in the search for energy-efficient device paradigms motivates the integration of materials with coexisting and coupled electric and magnetic order parameters into application-relevant architectures. In the so-called multiferroic magnetoelectrics, the understanding of switching events, however, is most of the time obstructed by the complex physics involved and in the non-trivial domain and domain wall configurations. This perspective offers an insightful overview of the most recent progress in the non-invasive optical probe of technology-significant ferroelectricity and antiferromagnetic order: the optical second harmonic generation (SHG). Over the last decade, its use in materials science has evolved, and SHG now enables the monitoring of the emergence of polarization in thin films, even during the epitaxial deposition process. Its long working distance further expedites the probe of multiple order parameters in various environments and under multi-stimuli excitations. The potential for the probe of complex electric dipole textures, such as ferroelectric skyrmions and time-resolved measurements, using SHG-based approaches in the most recent materials systems will be discussed.

Keywords

Multiferroics / BiFeO3 / SHG / ferroelectrics / antiferromagnetic / thin films

Cite this article

Download citation ▾
Jean-Yves Chauleau, Morgan Trassin. Sensing multiferroic states non-invasively using optical second harmonic generation. Microstructures, 2024, 4(1): 2024005 DOI:10.20517/microstructures.2023.50

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fiebig M,Meier D.The evolution of multiferroics.Nat Rev Mater2016;1:16046

[2]

Wolf SA,Buhrman RA.Spintronics: a spin-based electronics vision for the future.Science2001;294:1488-95

[3]

Müller M,Sarott MF,Trassin M.Ferroelectric thin films for oxide electronics.ACS Appl Electron Mater2023;5:1314-34

[4]

Varotto S,Cecchi S.Room-temperature ferroelectric switching of spin-to-charge conversion in germanium telluride.Nat Electron2021;4:740-7

[5]

Trassin M.Low energy consumption spintronics using multiferroic heterostructures.J Phys Condens Matter2016;28:033001

[6]

Manipatruni S,Lin CC.Scalable energy-efficient magnetoelectric spin-orbit logic.Nature2019;565:35-42

[7]

Heron JT,He Q.Deterministic switching of ferromagnetism at room temperature using an electric field.Nature2014;516:370-3

[8]

Leo N,White JS.Magnetoelectric inversion of domain patterns.Nature2018;560:466-70

[9]

Chauleau JY,Fusil S.Electric and antiferromagnetic chiral textures at multiferroic domain walls.Nat Mater2020;19:386-90

[10]

Gruverman A,Meier D.Piezoresponse force microscopy and nanoferroic phenomena.Nat Commun2019;10:1661 PMCID:PMC6458164

[11]

Kalinin SV,Chen LQ.Local polarization dynamics in ferroelectric materials.Rep Prog Phys2010;73:056502

[12]

Seidel J.Scanning probe microscopy investigation of topological defects.Symmetry2022;14:1098

[13]

Balke N,Jesse S.Differentiating ferroelectric and nonferroelectric electromechanical effects with scanning probe microscopy.ACS Nano2015;9:6484-92

[14]

Fong DD.In situ synchrotron X-ray studies of ferroelectric thin films.Annu Rev Mater Res2006;36:431-65

[15]

Rondin L,Hingant T,Maletinsky P.Magnetometry with nitrogen-vacancy defects in diamond.Rep Prog Phys2014;77:056503

[16]

Gross I,Garcia V.Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer.Nature2017;549:252-6

[17]

Dufour P,Fischer J.Onset of multiferroicity in prototypical single-spin cycloid BiFeO3 thin films.Nano Lett2023;23:9073-9

[18]

Haykal A,Akhtar W.Antiferromagnetic textures in BiFeO3 controlled by strain and electric field.Nat Commun2020;11:1704 PMCID:PMC7136242

[19]

Huxter WS,Trassin M.Imaging ferroelectric domains with a single-spin scanning quantum sensor.Nat Phys2023;19:644-8 PMCID:PMC10185469

[20]

Huxter WS,Davis ML.Scanning gradiometry with a single spin quantum magnetometer.Nat Commun2022;13:3761 PMCID:PMC9243102

[21]

Fink J, Schierle E, Weschke E, Geck J. Resonant elastic soft x-ray scattering.Rep Prog Phys2013;76:056502

[22]

van der Laan G. Soft X-ray resonant magnetic scattering of magnetic nanostructures.CR Phys2008;9:570-84

[23]

Lovesey SW.Chirality, magnetic charge and other strange entities in resonant x-ray Bragg diffraction.J Phys Condens Matter2009;21:474214

[24]

Durr HA,Dhesi SS.Chiral magnetic domain structures in ultrathin FePd films.Science1999;284:2166-8

[25]

Das S,Hong Z.Observation of room-temperature polar skyrmions.Nature2019;568:368-72

[26]

McCarter MR,Stoica VA.Structural chirality of polar skyrmions probed by resonant elastic x-ray scattering.Phys Rev Lett2022;129:247601

[27]

Fusil S,Li X.Polar chirality in BiFeO3 emerging from a peculiar domain wall sequence.Adv Elect Mater2022;8:2101155

[28]

Strkalj N,Campanini M.Depolarizing-field effects in epitaxial capacitor heterostructures.Phys Rev Lett2019;123:147601

[29]

Shin YJ,Kang SJ.Interface control of ferroelectricity in an SrRuO3/BaTiO3/SrRuO3 capacitor and its critical thickness.Adv Mater2017;29:1602795

[30]

Tagantsev AK.Interface-induced phenomena in polarization response of ferroelectric thin films.J Appl Phys2006;100:051607

[31]

Roy K,Atulasimha J.Switching dynamics of a magnetostrictive single-domain nanomagnet subjected to stress.Phys Rev B2011;83:224412

[32]

Hoffmann T,Becker P,Fiebig M.Time-resolved imaging of magnetoelectric switching in multiferroic MnWO4.Phys Rev B2011;84:184404

[33]

Garello K,Miron IM.Ultrafast magnetization switching by spin-orbit torques.Appl Phys Lett2014;105:212402

[34]

Heinz TF,Thompson WA.Study of Si111 surfaces by optical second-harmonic generation: reconstruction and surface phase transformation.Phys Rev Lett1985;54:63-6

[35]

Mcgilp JF.Optical second-harmonic generation for studying surfaces and interfaces.J Phys Condens Matter1989;1:SB85-92

[36]

Denev SA,Barnes E,Gopalan V.Probing ferroelectrics using optical second harmonic generation.J Am Ceram Soc2011;94:2699-727

[37]

Pershan PS.Nonlinear optical properties of solids: energy considerations.Phys Rev1963;130:919-29

[38]

Birss RR. Symmetry and magnetism. Amsterdam: North-Holland Publishing Company; 1964.

[39]

Fiebig M,Pisarev RV.Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review.J Opt Soc Am B2005;22:96-118

[40]

Sa D,Gros C.A generalized Ginzburg-Landau approach to second harmonic generation.Eur Phys J B2000;14:301-5

[41]

Kirilyuk A.Magnetization-induced-second-harmonic generation from surfaces and interfaces.J Opt Soc Am B2005;22:148-67

[42]

Maydykovskiy A,Temiryazev A.Nonlinear optical microscopy of interface layers of epitaxial garnet films.Appl Sci2023;13:8828

[43]

Mamonov EA,Maydykovskiy AI.Magnetic force and nonlinear optical microscopy of the surface domain structure in an epitaxial iron garnet film.J Exp Theor Phys2023;136:31-8

[44]

Fiebig M,Fröhlich D,Pisarev RV.Observation of coupled magnetic and electric domains.Nature2002;419:818-20

[45]

Fiebig M,Kohn K.Determination of the magnetic symmetry of hexagonal manganites by second harmonic generation.Phys Rev Lett2000;84:5620-3

[46]

Fiebig M,Lottermoser T,Pisarev RV.Second harmonic generation in the centrosymmetric antiferromagnet NiO.Phys Rev Lett2001;87:137202

[47]

Sänger I,Bayer M.Distribution of antiferromagnetic spin and twin domains in NiO.Phys Rev B2006;74:144401

[48]

Fiebig M,Krichevtsov BB.Second harmonic generation and magnetic-dipole-electric-dipole interference in antiferromagnetic Cr2O3.Phys Rev Lett1994;73:2127-30

[49]

Fiebig M,Sluyterman V L G.Domain topography of antiferromagnetic Cr2O3 by second-harmonic generation.Appl Phys Lett1995;66:2906-8

[50]

Trassin M,Manz S.Probing ferroelectric domain engineering in BiFeO3 thin films by second harmonic generation.Adv Mater2015;27:4871-76

[51]

Cherifi-Hertel S,Hertel R.Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy.Nat Commun2017;8:15768 PMCID:PMC5472758

[52]

Nordlander J,Strkalj N,Trassin M.Probing ferroic states in oxide thin films using optical second harmonic generation.Appl Sci2018;8:570

[53]

De Luca G, Rossell MD, Schaab J, Viart N, Fiebig M, Trassin M. Domain wall architecture in tetragonal ferroelectric thin films.Adv Mater2017;29:1605145

[54]

Chauleau JY,Carrétéro C,Viret M.Multi-stimuli manipulation of antiferromagnetic domains assessed by second-harmonic imaging.Nat Mater2017;16:803-7

[55]

Yadav AK,Hsu SL.Observation of polar vortices in oxide superlattices.Nature2016;530:198-201

[56]

Hadjimichael M,Zatterin E.Metal-ferroelectric supercrystals with periodically curved metallic layers.Nat Mater2021;20:495-502

[57]

Kavle P,Zorn JA.Exchange-interaction-like behavior in ferroelectric bilayers.Adv Mater2023;35:e2301934

[58]

Gradauskaite E,Gray N. Defeating depolarizing fields with artificial flux closure in ultrathin ferroelectrics. 2022. Avaliable from: http://arxiv.org/abs/2212.11073 [Last accessed on 17 Nov 2023]

[59]

Strkalj N,Nordlander J.Design and manipulation of ferroic domains in complex oxide heterostructures.Materials2019;12:3108 PMCID:PMC6803956

[60]

Ramesh R.Creating emergent phenomena in oxide superlattices.Nat Rev Mater2019;4:257-68

[61]

Strkalj N,Campanini M,Fiebig M.Optical second harmonic signature of phase coexistence in ferroelectric|dielectric heterostructures.Phys Rev B2022;105:174101

[62]

Caretta L,Yu J.Non-volatile electric-field control of inversion symmetry.Nat Mater2023;22:207-15

[63]

Shafer P,Aguado-Puente P.Emergent chirality in the electric polarization texture of titanate superlattices.Proc Natl Acad Sci USA2018;115:915-20 PMCID:PMC5798329

[64]

Gonçalves MA, Escorihuela-Sayalero C, Garca-Fernández P, Junquera J, Íñiguez J. Theoretical guidelines to create and tune electric skyrmion bubbles.Sci Adv2019;5:eaau7023 PMCID:PMC6377273

[65]

Lovesey SW.Circular dichroism of second harmonic generation response.Phys Rev B2019;100:245112

[66]

Behera P,Gómez-Ortiz F.Electric field control of chirality.Sci Adv2022;8:eabj8030 PMCID:PMC8730600

[67]

Hu XF,Lim D.In situ optical second-harmonic-generation monitoring of disilane adsorption and hydrogen desorption during epitaxial growth on Si001.Appl Phys Lett1997;71:1376-8

[68]

De Luca G, Strkalj N, Manz S, Bouillet C, Fiebig M, Trassin M. Nanoscale design of polarization in ultrathin ferroelectric heterostructures.Nat Commun2017;8:1419 PMCID:PMC5681682

[69]

Nordlander J,Rossell MD.The ultrathin limit of improper ferroelectricity.Nat Commun2019;10:5591 PMCID:PMC6897979

[70]

Choi KJ,Li YL.Enhancement of ferroelectricity in strained BaTiO3 thin films.Science2004;306:1005-9

[71]

Sarott MF,Trassin M.Tracking ferroelectric domain formation during epitaxial growth of PbTiO3 films.Appl Phys Lett2020;117:132901

[72]

Strkalj N,Vogel A.In-situ monitoring of interface proximity effects in ultrathin ferroelectrics.Nat Commun2020;11:5815 PMCID:PMC7669862

[73]

Gattinoni C,Härdi R,Trassin M.Interface and surface stabilization of the polarization in ferroelectric thin films.Proc Natl Acad Sci USA2020;117:28589-95 PMCID:PMC7682414

[74]

Sarott MF,Lochmann A,Trassin M.Controlling the polarization in ferroelectric PZT films via the epitaxial growth conditions.Adv Funct Mater2023;33:2214849

[75]

Sarott MF,Fiebig M.Multilevel polarization switching in ferroelectric thin films.Nat Commun2022;13:3159 PMCID:PMC9174202

[76]

Marković D,Querlioz D.Physics for neuromorphic computing.Nat Rev Phys2020;2:499-510

[77]

Chanthbouala A,Cherifi RO.A ferroelectric memristor.Nat Mater2012;11:860-4

[78]

Sarott MF,Nordlander J,Trassin M.In situmonitoring of epitaxial ferroelectric thin-film growth.J Phys Condens Matter2021;33:293001

[79]

Gradauskaite E,Gray N.Defeating depolarizing fields with artificial flux closure in ultrathin ferroelectrics.Nat Mater2023;22:1492-8

[80]

Gradauskaite E,Biswas B.Robust in-plane ferroelectricity in ultrathin epitaxial aurivillius films.Adv Materials Inter2020;7:2000202

[81]

Zhang Y,Zhong X,Zhong G.Probing ultrafast dynamics of ferroelectrics by time-resolved pump-probe spectroscopy.Adv Sci2021;8:e2102488 PMCID:PMC8596111

[82]

Kirilyuk A,Rasing T.Ultrafast optical manipulation of magnetic order.Rev Mod Phys2010;82:2731-84

[83]

Mankowsky R,Först M.Ultrafast reversal of the ferroelectric polarization.Phys Rev Lett2017;118:197601

[84]

Duong NP,Fiebig M.Ultrafast manipulation of antiferromagnetism of NiO.Phys Rev Lett2004;93:117402

[85]

Satoh T,Duong NP,Fiebig M.Ultrafast spin and lattice dynamics in antiferromagnetic Cr2O3.Phys Rev B2007;75:155406

[86]

Tzschaschel C,Fiebig M.Tracking the ultrafast motion of an antiferromagnetic order parameter.Nat Commun2019;10:3995 PMCID:PMC6728322

[87]

Cheong S,Wu W,Kiryukhin V.Seeing is believing: visualization of antiferromagnetic domains.npj Quantum Mater2020;5:3

[88]

Neacsu CC,Fiebig M.Second-harmonic near-field imaging of ferroelectric domain structure of YMnO3.Phys Rev B2009;79:100107

[89]

Damodaran AR,Hong Z.Phase coexistence and electric-field control of toroidal order in oxide superlattices.Nat Mater2017;16:1003-9

AI Summary AI Mindmap
PDF

66

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/