Temperature dependence of dielectric nonlinearity of BaTiO3 ceramics

Ichiro Fujii , Susan Trolier-McKinstry

Microstructures ›› 2023, Vol. 3 ›› Issue (4) : 2023045

PDF
Microstructures ›› 2023, Vol. 3 ›› Issue (4) :2023045 DOI: 10.20517/microstructures.2023.43
Research Article

Temperature dependence of dielectric nonlinearity of BaTiO3 ceramics

Author information +
History +
PDF

Abstract

In many commercially utilized ferroelectric materials, the motion of domain walls is an important contributor to the functional dielectric and piezoelectric responses. This paper compares the temperature dependence of domain wall motion for BaTiO3 ceramics with different grain sizes, point defect concentrations, and formulations. The grain boundaries act as significant pinning points for domain wall motion such that fine-grained materials show smaller extrinsic contributions to the properties below the Curie temperature and lower residual ferroelectric contributions immediately above the Curie temperature. Oxygen vacancy point defects make a modest change in the extrinsic contributions of undoped BaTiO3 ceramics. In formulated BaTiO3, extrinsic contributions to the dielectric response were suppressed over a wide temperature range. It is believed this is due to a combination of reduced grain size, the existence of a core-shell microstructure, and a reduction in domain wall continuity over the grain boundaries.

Keywords

Ferroelectrics / dielectric nonlinearity / grain size / ceramics

Cite this article

Download citation ▾
Ichiro Fujii, Susan Trolier-McKinstry. Temperature dependence of dielectric nonlinearity of BaTiO3 ceramics. Microstructures, 2023, 3(4): 2023045 DOI:10.20517/microstructures.2023.43

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hall DA.Review nonlinearity in piezoelectric ceramics.J Mater Sci2001;36:4575-601

[2]

Herbiet R,Dederichs H.Domain wall and volume contributions to material properties of PZT ceramics.Ferroelectrics1989;98:107-21

[3]

Setter N,Eng L.Ferroelectric thin films: review of materials, properties, and applications.J Appl Phys2006;100:051606

[4]

Bassiri-Gharb N,Hong E,Taylor DV.Domain wall contributions to the properties of piezoelectric thin films.J Electroceram2007;19:49-67

[5]

Li S,Cross LE.The extrinsic nature of nonlinear behavior observed in lead zirconate titanate ferroelectric ceramic.J Appl Phys1991;69:7219-24

[6]

Otonicar M,Rojac T.Dynamics of domain walls in ferroelectrics and relaxors.J Am Ceram Soc2022;105:6479-507

[7]

Arlt G.The influence of microstructure on the properties of ferroelectric ceramics.Ferroelectrics1990;104:217-27

[8]

Cao W.Grain size and domain size relations in bulk ceramic ferroelectric materials.J Phys Chem Solids1996;57:1499-505

[9]

Rayleigh L. XXV. Notes on electricity and magnetism. - III. On the behaviour of iron and steel under the operation of feeble magnetic forces. Avaliable from: https://www.tandfonline.com/doi/abs/10.1080/14786448708628000 [Last accessed on 1 Nov 2023]

[10]

Taylor DV.Evidence of domain wall contribution to the dielectric permittivity in PZT thin films at sub-switching fields.J Appl Phys1997;82:1973-5

[11]

Boser O.Statistical theory of hysteresis in ferroelectric materials.J Appl Phys1987;62:1344-8

[12]

Preisach F.Über die magnetische Nachwirkung.Z Physik1935;94:277-302

[13]

Robert G,Setter N.Preisach distribution function approach to piezoelectric nonlinearity and hysteresis.J Appl Phys2001;90:2459-64

[14]

Mayergoyz ID. Mathematical models of hysteresis and their applications. Amsterdam: Elsevier Academic Press; 2003.

[15]

Fujii I,Trolier-McKinstry S.Thickness dependence of dielectric nonlinearity of lead zirconate titanate films.IEEE Trans Ultrason Ferroelectr Freq Control2010;57:1717-23

[16]

Stancu A,Mitoseriu L,Okuyama M.First-order reversal curves diagrams for the characterization of ferroelectric switching.Appl phys Lett2003;83:3767-9

[17]

Johnson KM.Variation of dielectric constant with voltage in ferroelectrics and its application to parametric devices.J Appl Phys1962;33:2826-31

[18]

Narayanan M,Ma B,Balachandran U.Modified Johnson model for ferroelectric lead lanthanum zirconate titanate at very high fields and below Curie temperature.Appl phys Lett2012;100:022907

[19]

Tsurumi T,Kakemoto H,Chazono H.Dielectric properties of BaTiO3-BaZrO3 ceramics under a high electric field.J Mater Res2002;17:755-9

[20]

Cheng C,Dangi A.Improving PMUT receive sensitivity via dc bias and piezoelectric composition.Sensors2022;22:5614 PMCID:PMC9370952

[21]

Hirose S,Tomikawa Y,Uchino K.High power characteristics at antiresonance frequency of piezoelectric transducers.Ultrasonics1996;34:213-7

[22]

Mokrý P,Tagantsev AK,Stolichnov I.Evidence for dielectric aging due to progressive 180° domain wall pinning in polydomain Pb(Zr0.45Ti0.55)O3 thin films.Phys Rev B2009;79:054104

[23]

Wu K.Effect of the ac Field level on the aging of the dielectric response in polycrystalline BaTiO3.J Am Ceram Soc1992;75:3385-9

[24]

Fujii I,Han Y.Effect of oxygen partial pressure during firing on the high AC field response of BaTiO3 dielectrics.J Am Ceram Soc2010;93:1081-8

[25]

Fujii I,Trolier-McKinstry S.Grain size effect on the dielectric nonlinearity of BaTiO3 ceramics.J Appl Phys2010;107:104116

[26]

Nies C. Factors in improved DC bias performance in X7R capacitors. In: The 12th US-Japan seminar on dielectric piezoelectric ceramics, 2005 Nov 6-9; Annapolis, USA.

[27]

Fujii I,Nies C.Effect of grain size on dielectric nonlinearity in model BaTiO3-based multilayer ceramic capacitors.J Am Ceram Soc2011;94:194-9

[28]

Garten LM,Harris D,Trolier-McKinstry S.Residual ferroelectricity in barium strontium titanate thin film tunable dielectrics.J Appl Phys2014;116:044104

[29]

Zhang QM,Kim N.Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate-titanate ceramics.J Appl Phys1994;75:454-9

[30]

Randall CA,Kucera JP,Shrout TR.Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics.J Am Cera Soc1998;81:677-88

[31]

Ghosh D,Carter J.Domain wall displacement is the origin of superior permittivity and piezoelectricity in BaTiO3 at intermediate grain sizes.Adv Funct Mater2014;24:885-96

[32]

Marincel DM,Jesse S.Domain wall motion across various grain boundaries in ferroelectric thin films.J Am Ceram Soc2015;98:1848-57

[33]

Hennessey G,Tipsawat P,Collins L.Domain wall motion across microstructural features in polycrystalline ferroelectric films.Acta Mater2023;250:118871

[34]

Demartin M.Dependence of the direct piezoelectric effect in coarse and fine grain barium titanate ceramics on dynamic and static pressure.Appl phys Lett1996;68:3046-8

[35]

Kishi H,Chazono H.Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives.Jpn J Appl Phys2003;42:1-15

[36]

Mantri S.Ferroelectric domain continuity over grain boundaries for tetragonal, orthorhombic, and rhombohedral crystal symmetries.IEEE Trans Ultrason Ferroelectr Freq Control2018;65:1517-24

[37]

Bintachitt P,Damjanovic D.Collective dynamics underpins Rayleigh behavior in disordered polycrystalline ferroelectrics.Proc Natl Acad Sci USA2010;107:7219-24 PMCID:PMC2867733

[38]

Peters T,Checa M,Trolier-McKinstry S.Influence of doping and thickness on domain avalanches in lead zirconate titanate thin films.Appl Phys Lett2023;122:132906

[39]

Frey MH,Han P.The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics.Ferroelectrics1998;206:337-53

AI Summary AI Mindmap
PDF

87

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/