Magnetic structures and correlated physical properties in antiperovskites

Sihao Deng , Hongde Wang , Lunhua He , Cong Wang

Microstructures ›› 2023, Vol. 3 ›› Issue (4) : 2023044

PDF
Microstructures ›› 2023, Vol. 3 ›› Issue (4) :2023044 DOI: 10.20517/microstructures.2023.42
Review

Magnetic structures and correlated physical properties in antiperovskites

Author information +
History +
PDF

Abstract

Compounds with perovskite structures have become one of the focuses in both materials science and condensed matter physics because of their fascinating physical properties and potential functionalities correlated to magnetic structures. However, the understanding of the intriguing physical properties is still at an exploratory stage. Herein, owing to the magnetic frustration prompted by Mn6N or Mn6C octahedra, the abounding magnetic structures of antiperovskites, including collinear antiferromagnetic, collinear ferromagnetic, collinear ferrimagnetic, non-collinear magnetic, and non-coplanar magnetic spin configurations, are systematically introduced through the updated coverage. In addition, owing to the “spin-lattice-charge” coupling of antiperovskites, a large number of physical properties, such as anomalous thermal expansion, giant magnetoresistance, anomalous Hall effect, piezomagnetic/baromagnetic effects, magnetocaloric effect, barocaloric effect, etc., are summarized by combining the discussions of the determined magnetic structures. This review aims to clarify the current research progress in this field, focusing on the relationship between the magnetic structures and the correlated physical properties, and provides the conclusion and outlook on further performance optimization and mechanism exploration in antiperovskites.

Keywords

Antiperovskite / magnetic structures / physical properties / strong correlation material

Cite this article

Download citation ▾
Sihao Deng, Hongde Wang, Lunhua He, Cong Wang. Magnetic structures and correlated physical properties in antiperovskites. Microstructures, 2023, 3(4): 2023044 DOI:10.20517/microstructures.2023.42

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bednorz JG.Possible highT c superconductivity the Ba-La-Cu-O system.Z Physik B Condens Matter1986;64:189-93

[2]

Ahn CH,Antognazza L.Local, nonvolatile electronic writing of epitaxial Pb(Zr0.52Ti0.48)O3/SrRuO3 heterostructures.Science1997;276:1100-3

[3]

von Helmolt R, Wecker J, Holzapfel B, Schultz L, Samwer K. Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films.Phys Rev Lett1993;71:2331-3

[4]

Chen J,Forrester JS.The role of spontaneous polarization in the negative thermal expansion of tetragonal PbTiO3-based compounds.J Am Chem Soc2011;133:11114-7

[5]

Takenaka K.Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides.Appl Phys Lett2005;87:261902

[6]

Takenaka K,Misawa M.Negative thermal expansion in Ge-free antiperovskite manganese nitrides: Tin-doping effect.Appl Phys Lett2008;92:011927

[7]

Takenaka K.Zero thermal expansion in a pure-form antiperovskite manganese nitride.Appl Phys Lett2009;94:131904

[8]

Huang R,Cai F,Qian L.Low-temperature negative thermal expansion of the antiperovskite manganese nitride Mn3CuN codoped with Ge and Si.Appl Phys Lett2008;93:081902

[9]

Lin JC,Tong W.Tunable negative thermal expansion related with the gradual evolution of antiferromagnetic ordering in antiperovskite manganese nitrides Mn3+xAg1-xN (0 ≤ x ≤ 0.6).Appl Phys Lett2015;106:082405

[10]

Lin JC,Zhou XJ.Giant negative thermal expansion covering room temperature in nanocrystalline GaNxMn3.Appl Phys Lett2015;107:131902

[11]

Sun Y,Wen Y,Zhao J.Lattice contraction and magnetic and electronic transport properties of Mn3Zn1-xGexN.Appl Phys Lett2007;91:231913

[12]

Sun Y,Wen Y.Negative thermal expansion and magnetic transition in anti-perovskite structured Mn3Zn1-xSnxN compounds: rapid communications of the American ceramic society.J Am Ceram Soc2010;93:2178-81

[13]

Ding L,Sun Y,Chu L.Spin-glass-like behavior and negative thermal expansion in antiperovskite Mn3Ni1-xCuxN compounds.J Appl Phys2015;117:213915

[14]

Chu L,Yan J.Magnetic transition, lattice variation and electronic transport properties of Ag-doped Mn3Ni1-xAgxN antiperovskite compounds.Scr Mater2012;67:173-6

[15]

Deng S,Wu H.Invar-like behavior of antiperovskite Mn3+xNi1-xN compounds.Chem Mater2015;27:2495-501

[16]

Song X,Huang Q.Adjustable zero thermal expansion in antiperovskite manganese nitride.Adv Mater2011;23:4690-4

[17]

Iikubo S,Takenaka K,Takigawa M.Local lattice distortion in the giant negative thermal expansion material Mn3Cu1-xGexN.Phys Rev Lett2008;101:205901

[18]

Iikubo S,Takenaka K,Shamoto S.Magnetovolume effect in Mn3Cu1-xGexN related to the magnetic structure: neutron powder diffraction measurements.Phys Rev B2008;77:020409

[19]

Tong P,King G,Lin JC.Magnetic transition broadening and local lattice distortion in the negative thermal expansion antiperovskite Cu1-xSnxNMn3.Appl Phys Lett2013;102:041908

[20]

Wang C,Yao Q.Tuning the range, magnitude, and sign of the thermal expansion in intermetallic Mn3 (Zn, M)x N(M = Ag, Ge).Phys Rev B2012;85:220103

[21]

Deng S,Wu H.Phase separation and zero thermal expansion in antiperovskite Mn3Zn0.77Mn0.19N0.94: an in situ neutron diffraction investigation.Scr Mater2018;146:18-21

[22]

Shi K,Colin CV.Investigation of the spin-lattice coupling in Mn3Ga1-xSnxN antiperovskites.Phys Rev B2018;97:054110

[23]

Lukashev P,Belashchenko K.Theory of the piezomagnetic effect in Mn-based antiperovskites.Phys Rev B2008;78:184414

[24]

Qu BY.Nature of the negative thermal expansion in antiperovskite compound Mn3ZnN.J Appl Phys2010;108:113920

[25]

Mochizuki M,Okabe R.Spin model for nontrivial types of magnetic order in inverse-perovskite antiferromagnets.Phys Rev B2018;97:060401

[26]

Kamishima K,Nakagawa H.Giant magnetoresistance in the intermetallic compound Mn3GaC.Phys Rev B2000;63:024426

[27]

Deng S,Uhlarz M.Controlling chiral spin states of a triangular-lattice magnet by cooling in a magnetic field.Adv Funct Mater2019;29:1900947

[28]

Gurung G,Paudel TR.Anomalous HALL conductivity of noncollinear magnetic antiperovskites.Phys Rev Mater2019;3:044409

[29]

Samathrakis I.Tailoring the anomalous Hall effect in the noncollinear antiperovskite Mn3GaN.Phys Rev B2020;101:214423

[30]

Zhao K,Chen H,Asano H.Anomalous Hall effect in the noncollinear antiferromagnetic antiperovskite Mn3Ni1-xCuxN.Phys Rev B2019;100:045109

[31]

Rani GM,Motora KG.Waste-to-energy: utilization of recycled waste materials to fabricate triboelectric nanogenerator for mechanical energy harvesting.J Clean Prod2022;363:132532

[32]

Gokana MR,Motora KG,Yen WT.Effects of patterned electrode on near infrared light-triggered cesium tungsten bronze/poly(vinylidene)fluoride nanocomposite-based pyroelectric nanogenerator for energy harvesting.J Power Sources2022;536:231524

[33]

Zemen J,Sandeman KG.Piezomagnetism as a counterpart of the magnetovolume effect in magnetically frustrated Mn-based antiperovskite nitrides.Phys Rev B2017;96:024451

[34]

Boldrin D,Zou B.Giant Piezomagnetism in Mn3NiN.ACS Appl Mater Interfaces2018;10:18863-8

[35]

Shi K,Yan J.Baromagnetic effect in antiperovskite Mn3Ga0.95N0.94 by neutron powder diffraction analysis.Adv Mater2016;28:3761-7

[36]

Tohei T,Kanomata T.Negative magnetocaloric effect at the antiferromagnetic to ferromagnetic transition of Mn3GaC.J Appl Phys2003;94:1800-2

[37]

Yu M,Moodenbaugh AR.Assessment of the magnetic entropy change in the metallic antiperovskite Mn3GaC1-δ (δ = 0, 0.22).J Magn Magn Mater2006;299:317-26

[38]

Tohei T,Kanomata T.Large magnetocaloric effect of Mn3-xCoxGaC.J Magn Magn Mater2004;272-76:E585-6

[39]

Yan J,Wu H.Phase transitions and magnetocaloric effect in Mn3Cu0.89N0.96.Acta Mater2014;74:58-65

[40]

Matsunami D,Takenaka K.Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN.Nat Mater2015;14:73-8

[41]

Boldrin D,Zemen J.Multisite exchange-enhanced barocaloric response in Mn3NiN.Phys Rev X2018;8:041035

[42]

Chi EO,Hur NH.Nearly zero temperature coefficient of resistivity in antiperovskite compound CuNMn3.Solid State Commun2001;120:307-10

[43]

Sun Y,Chu L,Nie M.Low temperature coefficient of resistivity induced by magnetic transition and lattice contraction in Mn3NiN compound.Scr Mater2010;62:686-9

[44]

Takenaka K,Shibayama T,Oe T.Extremely low temperature coefficient of resistance in antiperovskite Mn3Ag1-xCuxN.Appl Phys Lett2011;98:022103

[45]

Lin JC,Tong P.Tunable temperature coefficient of resistivity in C- and Co-doped CuNMn3.Scr Mater2011;65:452-5

[46]

Deng S,Wang L.Near-zero temperature coefficient of resistivity associated with magnetic ordering in antiperovskite Mn3+xNi1-xN.Appl Phys Lett2016;108:041908

[47]

He T,Ramirez AP.Superconductivity in the non-oxide perovskite MgCNi3.Nature2001;411:54-6

[48]

Rosner H,Johannes MD,Tosatti E.Superconductivity near ferromagnetism in MgCNi3.Phys Rev Lett2002;88:027001

[49]

Wu M,Chen T,Nakatsuji S.Magneto-optical Kerr effect in a non-collinear antiferromagnet Mn3Ge.Appl Phys Lett2020;116:132408

[50]

Balk AL,Thomas SM.Comparing the anomalous Hall effect and the magneto-optical Kerr effect through antiferromagnetic phase transitions in Mn3Sn.Appl Phys Lett2019;114:032401

[51]

Feng W,Zhou J,Niu Q.Large magneto-optical Kerr effect in noncollinear antiferromagnets Mn3X (X = Rh, Ir, Pt).Phys Rev B2015;92:144426

[52]

Kamishima K,Goto T,Kanomata T.Magnetic behavior of Mn3GaC under high magnetic field and high pressure.J Phys Soc Jpn1998;67:1748-54

[53]

Fruchart D,Sayetat F,Fruchart R.Structure magnetique de Mn3GaC.Solid State Commun1970;8:91-9

[54]

Fruchart D.Magnetic studies of the metallic perovskite-type compounds of manganese.J Phys Soc Jpn1978;44:781-91

[55]

Çakιr Ö.Reversibility in the inverse magnetocaloric effect in Mn3GaC studied by direct adiabatic temperature-change measurements.Appl Phys Lett2012;100:202404

[56]

Sénateur JP,L'héritier P,Fruchart ME.Etude par spectrometrie mössbauer de ZnMn3 et de la transition antiferro-ferromagnetique de GaMn3C dopes au fer 57.Mater Res Bull1974;9:603-14

[57]

Deng S,Wang L.Frustrated triangular magnetic structures of Mn3ZnN: applications in thermal expansion.J Phys Chem C2015;119:24983-90

[58]

Fruchart D,Madar R.Diffraction neutronique de Mn3ZnN.J Phys Colloques1971;32:C1-876

[59]

Wu M,Sun Y.Magnetic structure and lattice contraction in Mn3NiN.J Appl Phys2013;114:123902

[60]

Hua L,Chen LF.First-principles investigation of Ge doping effects on the structural, electronic and magnetic properties in antiperovskite Mn3CuN.J Phys Condens Matter2010;22:206003

[61]

Han H,Deng S.Effect of thermal stress on non-collinear antiferromagnetic phase transitions in antiperovskite Mn3GaN compounds with Mn3SbN inclusions.Ceramics Int2022;48:15200-6

[62]

Sun Y,Shi K.Giant zero-field cooling exchange-bias-like behavior in antiperovskite Mn3Co0.61Mn0.39N compound.Phys Rev Mater2019;3:024409

[63]

Salvador JR,Hogan T.Zero thermal expansion in YbGaGe due to an electronic valence transition.Nature2003;425:702-5

[64]

Mary TA,Vogt T.Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8.Science1996;272:90-2

[65]

Song Y,Deng S,Chen J.Negative thermal expansion in magnetic materials.Prog Mater Sci2021;121:100835

[66]

Chen J,Deng J.Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications.Chem Soc Rev2015;44:3522-67

[67]

Gava V,Perottoni CA.First-principles mode Gruneisen parameters and negative thermal expansion in α-ZrW2O8.Phys Rev Lett2012;109:195503

[68]

Li CW,Muñoz JA.Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3.Phys Rev Lett2011;107:195504

[69]

Long YW,Saito T,Muranaka S.Temperature-induced A-B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite.Nature2009;458:60-3

[70]

Gerhardt I,Lamas-Linares A,Kurtsiefer C.Full-field implementation of a perfect eavesdropper on a quantum cryptography system.Nat Commun2011;2:349

[71]

Chen J,Ren Y.Unusual transformation from strong negative to positive thermal expansion in PbTiO3-BiFeO3 perovskite.Phys Rev Lett2013;110:115901

[72]

Huang R,Fan W.Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds.J Am Chem Soc2013;135:11469-72

[73]

Qi TF,Parkin S,Schlottmann P.Negative volume thermal expansion via orbital and magnetic orders in Ca2Ru1-xCrxO4 (0 < x < 0.13).Phys Rev Lett2010;105:177203

[74]

Richter DD,Trumbore SE.Rapid accumulation and turnover of soil carbon in a re-establishing forest.Nature1999;400:56-8

[75]

Kiyama T,Kosuge K,Bando Y.Invar effect of SrRuO3: itinerant electron magnetism of Ru 4d electrons.Phys Rev B Condens Matter1996;54:R756-9

[76]

Taniguchi T,Okada N.Anomalous volume expansion in CaRu0.85Fe0.15O3: neutron powder diffraction and magnetic compton scattering.Phys Rev B2007;75:024414

[77]

Klimczuk T,Springell R.Negative thermal expansion and antiferromagnetism in the actinide oxypnictide NpFeAsO.Phys Rev B2012;85:174506

[78]

Uchishiba H.Antiferromagnetism of γ-phase manganese alloys containing Ni, Zn, Ga and Ge.J Phys Soc Jpn1971;31:436-40

[79]

Yokoyama T.Anisotropic thermal expansion and cooperative Invar and anti-Invar effects in mn alloys.Phys Rev Lett2013;110:075901

[80]

Yu C,Jiang S.Plastic and low-cost axial zero thermal expansion alloy by a natural dual-phase composite.Nat Commun2021;12:4701 PMCID:PMC8338949

AI Summary AI Mindmap
PDF

39

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/