What lies beneath? Investigations of atomic force microscopy-based nano-machining to reveal sub-surface ferroelectric domain configurations in ultrathin films

Lynette Keeney , Louise Colfer , Debismita Dutta , Michael Schmidt , Guannan Wei

Microstructures ›› 2023, Vol. 3 ›› Issue (4) : 2023041

PDF
Microstructures ›› 2023, Vol. 3 ›› Issue (4) :2023041 DOI: 10.20517/microstructures.2023.41
Research Article

What lies beneath? Investigations of atomic force microscopy-based nano-machining to reveal sub-surface ferroelectric domain configurations in ultrathin films

Author information +
History +
PDF

Abstract

Multiferroic materials, encompassing simultaneous ferroelectric and ferromagnetic polarization states, are enticing multi-state materials for memory scaling beyond existing technologies. Aurivillius phase B6TFMO (Bi6TixFeyMnzO18) is a unique room temperature multiferroic material that could ideally be suited to future production of revolutionary memory devices. As miniaturization of electronic devices continues, it is crucial to characterize ferroelectric domain configurations at very small (sub-10 nm) thickness. Direct liquid injection chemical vapor deposition allows for frontier development of ultrathin films at fundamental (close to unit cell) dimensions. However, layer-by-layer growth of ultrathin complex oxides is subject to the formation of surface contaminants and 2D islands and pits, which can obscure visualization of domain patterns using piezoresponse force microscopy (PFM). Herein, we apply force from a sufficiently stiff diamond cantilever while scanning over ultrathin films to perform atomic force microscopy (AFM)-based nano-machining of the surface layers. Subsequent lateral PFM imaging of sub-surface layers uncovers 45° orientated striped twin domains, entirely distinct from the randomly configured piezoresponse observed for the pristine film surface. Furthermore, our investigations indicate that these sub-surface domain structures persist along the in-plane directions throughout the film depth down to thicknesses of less than half of an Aurivillius phase unit cell (< 2.5 nm). Thus, AFM-based nano-machining in conjunction with PFM allows demonstration of stable in-plane ferroelectric domains at thicknesses lower than previously determined for multiferroic B6TFMO. These findings demonstrate the technological potential of Aurivillius phase B6TFMO for future miniaturized memory storage devices. Next-generation devices based on ultrathin multiferroic tunnel junctions are projected.

Keywords

Scanning probe microscopy / piezoresponse force microscopy / ultrathin films / chemical vapor deposition / ferroelectrics / multiferroics / atomic force microscopy-based nano-machining / domains / domain walls

Cite this article

Download citation ▾
Lynette Keeney, Louise Colfer, Debismita Dutta, Michael Schmidt, Guannan Wei. What lies beneath? Investigations of atomic force microscopy-based nano-machining to reveal sub-surface ferroelectric domain configurations in ultrathin films. Microstructures, 2023, 3(4): 2023041 DOI:10.20517/microstructures.2023.41

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Scott JF.Future issues in ferroelectric miniaturization.Ferroelectrics1998;206:365-79

[2]

Li S,Vetrone JM,Newnham RE.Dimension and size effects in ferroelectrics.Jpn J Appl Phys1997;36:5169

[3]

Qiao H,Choi WS,Kim Y.Ultra-thin ferroelectrics.Mater Sci Eng R Rep2021;145:100622

[4]

Tybell T,Triscone J.Ferroelectricity in thin perovskite films.Appl Phys Lett1999;75:856-8

[5]

Fong DD,Streiffer SK.Ferroelectricity in ultrathin perovskite films.Science2004;304:1650-3

[6]

Choi KJ,Li YL.Enhancement of ferroelectricity in strained BaTiO3 thin films.Science2004;306:1005-9

[7]

Cheema SS,Shanker N.Enhanced ferroelectricity in ultrathin films grown directly on silicon.Nature2020;580:478-82

[8]

Vasudevan RK,Cheng X.Deterministic arbitrary switching of polarization in a ferroelectric thin film.Nat Commun2014;5:4971

[9]

Guo YY,Perez-Mato JM.Unexpected phase transition sequence in the ferroelectric Bi4Ti3O12.IUCrJ2019;6:438-46 PMCID:PMC6503926

[10]

Deepak N,Keeney L,Whatmore RW.Atomic vapor deposition of bismuth titanate thin films.J Appl Phys2013;113:187207

[11]

Keeney L,Kulkarni S,Pemble ME.Room temperature electromechanical and magnetic investigations of ferroelectric Aurivillius phase Bi5Ti3(FexMn1-x)O15 (x = 1 and 0.7) chemical solution deposited thin films.J Appl Phys2012;112:024101

[12]

Keeney L,Deepak N.Room temperature ferroelectric and magnetic investigations and detailed phase analysis of Aurivillius phase Bi5Ti3Fe0.7Co0.3O15 thin films.J Appl Phys2012;112:052010

[13]

Keeney L,Groh C,Whatmore RW.Piezoresponse force microscopy investigations of Aurivillius phase thin films.J Appl Phys2010;108:042004

[14]

Zhang PF,Keeney L,Whatmore RW.The structural and piezoresponse properties of c-axis-oriented Aurivillius phase Bi5Ti3FeO15 thin films deposited by atomic vapor deposition.Appl Phys Lett2012;101:112903

[15]

Wouters DJ,Goux L.Integration of SrBi2Ta2O9 thin films for high density ferroelectric random access memory.J Appl Phys2006;100:051603

[16]

Park BH,Bu SD,Lee J.Lanthanum-substituted bismuth titanate for use in non-volatile memories.Nature1999;401:682-4

[17]

Annual report pursuant to section 13 or 15(d) of the securities exchange act of 1934 for the fiscal year ended March 31, 2006 commission file number 1 - 6784. Available from: https://www.sec.gov/Archives/edgar/data/63271/000119312506188347/d20f.htm [Last accessed on 16 Oct 2023]

[18]

Fujii E.First 0.18 μm SBT-based embedded FeRAM technology with hydrogen damage free stacked cell structure.Integr Ferroelectr2003;53:317-23

[19]

Pitcher MJ,Dyer MS.Magnetic materials. Tilt engineering of spontaneous polarization and magnetization above 300 K in a bulk layered perovskite.Science2015;347:420-4

[20]

Suwardi A,Lee S.Turning antiferromagnetic Sm0.34Sr0.66MnO3 into a 140 K ferromagnet using a nanocomposite strain tuning approach.Nanoscale2016;8:8083-90

[21]

Choi EM,Kursumovic A.Nanoengineering room temperature ferroelectricity into orthorhombic SmMnO3 films.Nat Commun2020;11:2207 PMCID:PMC7200746

[22]

Srihari NV, Vinayakumar KB, Nagaraja KK. Magnetoelectric coupling in bismuth ferrite - challenges and perspectives.Coatings2020;10:1221

[23]

Keeney L,Schmidt M.Magnetic field-induced ferroelectric switching in multiferroic aurivillius phase thin films at room temperature.J Am Ceram Soc2013;96:2339-57

[24]

Faraz A,Schmidt M.Direct visualization of magnetic-field-induced magnetoelectric switching in multiferroic aurivillius phase thin films.J Am Ceram Soc2017;100:975-87

[25]

Moore K,Griffin SM.Charged domain wall and polar vortex topologies in a room-temperature magnetoelectric multiferroic thin film.ACS Appl Mater Interfaces2022;14:5525-36 PMCID:PMC8815039

[26]

Keeney L,Palizdar M.Ferroelectric behavior in exfoliated 2D aurivillius oxide flakes of sub-unit cell thickness.Adv Elect Materials2020;6:1901264

[27]

Keeney L,O’sullivan M,Schmidt M.Persistence of ferroelectricity close to unit-cell thickness in structurally disordered aurivillius phases.Chem Mater2020;32:10511-23

[28]

Keeney L,Schmidt M.Probing ferroelectric behavior in sub-10 nm bismuth-rich aurivillius films by piezoresponse force microscopy.Microsc Microanal2022;28:1396-406

[29]

Gradauskaite E,Biswas B.Robust in-plane ferroelectricity in ultrathin epitaxial aurivillius films.Adv Materials Inter2020;7:2000202

[30]

Gradauskaite E,Campanini M,Trassin M.Nanoscale design of high-quality epitaxial aurivillius thin films.Chem Mater2021;33:9439-46

[31]

Wang Y,Wang B.Ultrathin ferroelectric films: growth, characterization, physics and applications.Materials2014;7:6377-485 PMCID:PMC5456150

[32]

Lines ME, Glass AM. Principles and applications of ferroelectrics and related materials. Oxford: Oxford University Press; 1977. p.525. Available from: https://academic.oup.com/book/25990 [Last accessed on 11 Oct 2023]

[33]

Venables JA,Hanbucken M.Nucleation and growth of thin films.Rep Prog Phys1984;47:399

[34]

Binnig G,Gerber C.Atomic force microscope.Phys Rev Lett1986;56:930-3

[35]

Steffes JJ,Ramesh R.Thickness scaling of ferroelectricity in BiFeO3 by tomographic atomic force microscopy.Proc Natl Acad Sci USA2019;116:2413-8 PMCID:PMC6377454

[36]

Wang J,Li Z,Luo X.Processing outcomes of atomic force microscope tip-based nanomilling with different trajectories on single-crystal silicon.Precis Eng2021;72:480-90

[37]

Iwata F,Asao T.Removal method of nano-cut debris for photomask repair using an atomic force microscopy system.Jpn J Appl Phys2009;48:08JB20

[38]

Robinson T,Bozak R,Archuletta M.Nanomachining processes for 45, 32 nm mode mask repair and beyond. Procedings of the Photomask and Next-Generation Lithography Mask Technology XV; 2008 May 19; Yokohama, Japan.

[39]

Robinson T,Bozak R.Advanced mask particle cleaning solutions. Procedings of the SPIE Photomask Technology; 2007 Oct 30; Monterey, United States.

[40]

Bartkowska JA,Niemiec P.Multiferroic aurivillius-type Bi6Fe2-xMnxTi3O18 (0 ≤ x ≤ 1.5) ceramics with negative dielectric constant.Appl Phys A2018;124:823

[41]

Sader JE,Gibson CT.A virtual instrument to standardise the calibration of atomic force microscope cantilevers.Rev Sci Instrum2016;87:093711

[42]

Kalinin SV,Jesse S.Vector piezoresponse force microscopy.Microsc Microanal2006;12:206-20

[43]

Ismunandar ,Hoshikawa A.Structural studies of five layer Aurivillius oxides: A2Bi4Ti5O18 (A = Ca, Sr, Ba and Pb).J Solid State Chem2004;177:4188-96

[44]

Holder CF.Tutorial on powder X-ray diffraction for characterizing nanoscale materials.ACS Nano2019;13:7359-65

[45]

Frank FC. One-dimensional dislocations III. Influence of the second harmonic term in the potential representation, on the properties of the model. Proceedings of the Royal Society of London; 1949 Dec 22; London, UK. London: Royal; pp. 125-34.

[46]

Trolier-mckinstry S.Crystal chemistry of piezoelectric materials. In: Safari A, Akdoğan EK, editors. Piezoelectric and acoustic materials for transducer applications. Boston: Springer US; 2008. pp. 39-56.

[47]

Whatmore, R. Ferroelectric materials. In: Kasap S, Capper P, editors. Springer handbook of electronic and photonic materials. Springer International Publishing: Cham; 2017. p. 1.

[48]

Landau L.3 - on the theory of the dispersion of magnetic permeability in ferromagnetic bodies. In: Pitaevski LP editors. Perspectives in theoretical physics. The collected papers of E. M. Lifshitz. Amsterdam:Elsevier; 1992. pp. 51-65.

[49]

Kittel C.Theory of the structure of ferromagnetic domains in films and small particles.Phys Rev1946;70:965

[50]

Kittel C.Physical theory of ferromagnetic domains.Rev Mod Phys1949;21:541

[51]

Wang H,Yoong HY.Direct observation of room-temperature out-of-plane ferroelectricity and tunneling electroresistance at the two-dimensional limit.Nat Commun2018;9:3319 PMCID:PMC6102252

[52]

Gradauskaite E,Gray N.Defeating depolarizing fields with artificial flux closure in ultrathin ferroelectrics.arXiv2022;2212;11073

[53]

Nam J,Castellan JP,Britten JF.The origin of preferential twinning in YBa2Cu3O7-δ thin films deposited on the (0 0 1) NdGaO3 substrate.J Appl Phys2005;97:123906

[54]

Zurbuchen MA,Schubert J,Schlom DG.Determination of the thermal conductivity tensor of the n = 7 Aurivillius phase Sr4Bi4Ti7O24.Appl Phys Lett2012;101:021904

[55]

Shen XW,Tian BB.Two-dimensional ferroelectric tunnel junction: the case of monolayer in:SnSe/SnSe/Sb:SnSe homostructure.ACS Appl Electron Mater2019;1:1133-40

[56]

Chang K,Lin H.Discovery of robust in-plane ferroelectricity in atomic-thick SnTe.Science2016;353:274-8

[57]

Liu J,JI SH,Fu L. Apparatus and methods for memory using in-plane polarization. Available from: https://www.osti.gov/servlets/purl/1438442 [Last accessed on 11 Oct 2023].

[58]

Shen H,Chang K.In-plane ferroelectric tunnel junction.Phys Rev Appl2019;11:024048

[59]

Momma K.VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data.J Appl Cryst2011;44:1272-6

AI Summary AI Mindmap
PDF

50

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/