Scanning transmission electron microscopy for advanced characterization of ferroic materials

Matthew J. Cabral , Zibin Chen , Xiaozhou Liao

Microstructures ›› 2023, Vol. 3 ›› Issue (4) : 2023040

PDF
Microstructures ›› 2023, Vol. 3 ›› Issue (4) :2023040 DOI: 10.20517/microstructures.2023.39
Perspective

Scanning transmission electron microscopy for advanced characterization of ferroic materials

Author information +
History +
PDF

Abstract

Scanning Transmission electron microscopy (STEM) technologies have undergone significant advancements in the last two decades. Advancements in aberration-correction technology, ultra-high energy resolution monochromators, and state-of-the-art detectors/cameras have established STEM as an essential tool for investigating material chemistry and structure from the micro to the atomic scale. This characterization technique has been invaluable for understanding and characterizing the origins of ferroic material properties in next-generation advanced materials. Many unique properties of engineering materials, such as ferroelectricity, piezoelectricity, and ferromagnetism, are intricately linked to their atomic-scale composition and structure. STEM enables direct observation of these structural characteristics, establishing a link with macroscopic properties. In this perspective, we provide an overview of the application of advanced STEM techniques in investigating the origin of ferroic material properties, along with discussions on potential opportunities for further utilization of STEM techniques.

Keywords

Scanning transmission electron microscopy / materials characterization / ferroic materials / aberration-correction / image analysis / atomic resolution imaging

Cite this article

Download citation ▾
Matthew J. Cabral, Zibin Chen, Xiaozhou Liao. Scanning transmission electron microscopy for advanced characterization of ferroic materials. Microstructures, 2023, 3(4): 2023040 DOI:10.20517/microstructures.2023.39

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Covaci C.Piezoelectric energy harvesting solutions: a review.Sensors2020;20:3512 PMCID:PMC7349337

[2]

Sezer N.A comprehensive review on the state-of-the-art of piezoelectric energy harvesting.Nano Energy2021;80:105567

[3]

Shung KK,Zhou QF.Piezoelectric materials for high frequency medical imaging applications: a review.J Electroceram2007;19:141-7

[4]

Sekhar MC,Kumar NS,Mallikarjuna A.A review on piezoelectric materials and their applications.Cryst Res Technol2023;58:2200130

[5]

Iqbal M,Khan FU.Vibration-based piezoelectric, electromagnetic, and hybrid energy harvesters for microsystems applications: a contributed review.Int J Energy Res2021;45:65-102

[6]

Li F,Chen Z.Ultrahigh piezoelectricity in ferroelectric ceramics by design.Nat Mater2018;17:349-54

[7]

Li F,Xu B.Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals.Science2019;364:264-8

[8]

Zhang S.High entropy design: a new pathway to promote the piezoelectricity and dielectric energy storage in perovskite oxides.Microstructures2022;3:2023003

[9]

Batson PE,Krivanek OL.Sub-angstrom resolution using aberration corrected electron optics.Nature2002;418:617-20

[10]

Krivanek O,Lupini A.Towards sub-Å electron beams.Ultramicroscopy1999;78:1-11

[11]

Hetherington C.Aberration correction for TEM.Mater Today2004;7:50-5

[12]

Voyles PM,Grazul JL,Gossmann HJ.Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si.Nature2002;416:826-9

[13]

Voyles PM,Muller DA.Imaging individual atoms inside crystals with ADF-STEM.Ultramicroscopy2003;96:251-73

[14]

Jiang Y,Han Y.Electron ptychography of 2D materials to deep sub-ångström resolution.Nature2018;559:343-9

[15]

Liu C,Cheng Z.Direct observation of oxygen atoms taking tetrahedral interstitial sites in medium-entropy body-centered-cubic solutions.Adv Mater2023;35:e2209941

[16]

Close R,Shibata N.Towards quantitative, atomic-resolution reconstruction of the electrostatic potential via differential phase contrast using electrons.Ultramicroscopy2015;159 Pt 1:124-37

[17]

Krivanek OL,Dellby N.Vibrational spectroscopy in the electron microscope.Nature2014;514:209-12

[18]

de la Mata M, Molina SI. STEM tools for semiconductor characterization: beyond high-resolution imaging.Nanomaterials2022;12:337 PMCID:PMC8840450

[19]

Ophus C.Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond.Microsc Microanal2019;25:563-82

[20]

Lin Y,Tai X,Han X.Analytical transmission electron microscopy for emerging advanced materials.Matter2021;4:2309-39

[21]

Williams DB.Transmission electron microscopy. New York: Springer; 1996.

[22]

Lebeau JM.Experimental quantification of annular dark-field images in scanning transmission electron microscopy.Ultramicroscopy2008;108:1653-8

[23]

LeBeau JM,Allen LJ.Quantitative atomic resolution scanning transmission electron microscopy.Phys Rev Lett2008;100:206101

[24]

Muller DA,Ohtomo A,Hwang HY.Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3.Nature2004;430:657-61

[25]

Fitting L,Schmehl A,Muller DA.Subtleties in ADF imaging and spatially resolved EELS: a case study of low-angle twist boundaries in SrTiO3.Ultramicroscopy2006;106:1053-61

[26]

Zhang W,Xu P.Structure domains induced nonswitchable ferroelectric polarization in polar doubly cation-ordered perovskites.Ceram Int2022;48:30853-8

[27]

Campanini M,Yang CH,Rossell MD.Periodic giant polarization gradients in doped BiFeO3 thin films.Nano Lett2018;18:717-24

[28]

Shur VY,Baturin IS.Micro- and nano-domain engineering in lithium niobate.App Phys Rev2015;2:040604

[29]

Okunishi E,Sawada H,Hori M.Visualization of light elements at ultrahigh resolution by STEM annular bright field microscopy.Microsc Microanal2009;15:164-5

[30]

Findlay SD,Sawada H.Robust atomic resolution imaging of light elements using scanning transmission electron microscopy.Appl Phys Lett2009;95:191913

[31]

Ge W,Alexe M,Sanchez AM.180° head-to-head flat domain walls in single crystal BiFeO3.Microstructures2023;3:2023026

[32]

Ishikawa R,Sawada H,Hosokawa F.Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy.Nat Mater2011;10:278-81

[33]

Okunishi E,Kondo Y.Experimental study of annular bright field (ABF) imaging using aberration-corrected scanning transmission electron microscopy (STEM).Micron2012;43:538-44

[34]

Vogel A,Campanini M,Rossell MD.Monitoring electrical biasing of Pb(Zr0.2Ti0.8)O3 ferroelectric thin films in situ by DPC-stem imaging.Materials2021;14:4749 PMCID:PMC8400982

[35]

Yücelen E,Bosch EGT.Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution.Sci Rep2018;8:2676 PMCID:PMC5805791

[36]

Rose H.Nonstandard imaging methods in electron microscopy.Ultramicroscopy1977;2:251-67

[37]

Chapman JN,Waddell EM.The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy.Ultramicroscopy1978;3:203-13

[38]

Shibata N,Kohno Y,Kondo Y.Differential phase-contrast microscopy at atomic resolution.Nat Phys2012;8:611-5

[39]

Lazić I,Lazar S.Phase contrast STEM for thin samples: integrated differential phase contrast.Ultramicroscopy2016;160:265-80

[40]

Kumar A,Bowes PC.Atomic-resolution electron microscopy of nanoscale local structure in lead-based relaxor ferroelectrics.Nat Mater2021;20:62-7

[41]

Pennycook TJ,Yang H,Jones L.Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: experimental demonstration at atomic resolution.Ultramicroscopy2015;151:160-7

[42]

Yang H,Nellist PD.Efficient phase contrast imaging in STEM using a pixelated detector. Part II: optimisation of imaging conditions.Ultramicroscopy2015;151:232-9

[43]

Maclaren I,Allen CS.Detectors - the ongoing revolution in scanning transmission electron microscopy and why this important to material characterization.APL Mater2020;8:110901

[44]

Tate MW,Chamberlain D.High dynamic range pixel array detector for scanning transmission electron microscopy.Microsc Microanal2016;22:237-49

[45]

Chen Z,Shao YT.Electron ptychography achieves atomic-resolution limits set by lattice vibrations.Science2021;372:826-31

[46]

Lozano JG,Jin L,Bruce PG.Low-dose aberration-free imaging of Li-rich cathode materials at various states of charge using electron ptychography.Nano Lett2018;18:6850-5

[47]

Chen Z,Jiang Y.Mixed-state electron ptychography enables sub-Angstrom resolution imaging with picometer precision at low dose.Nat Commun2020;11:2994 PMCID:PMC7293311

[48]

Zeltmann SE,Bustillo KC.Patterned probes for high precision 4D-STEM bragg measurements.Ultramicroscopy2020;209:112890

[49]

Mahr C,Grieb T,Schowalter M.Accurate measurement of strain at interfaces in 4D-STEM: a comparison of various methods.Ultramicroscopy2021;221:113196

[50]

Tsuda K,Tanaka M.Two-dimensional mapping of polarizations of rhombohedral nanostructures in the tetragonal phase of BaTiO3 by the combined use of the scanning transmission electron microscopy and convergent-beam electron diffraction methods.Appl Phys Lett2013;103:082908

[51]

Mun J,Roh CJ.In situ cryogenic HAADF-STEM observation of spontaneous transition of ferroelectric polarization domain structures at low temperatures.Nano Lett2021;21:8679-86

[52]

Zheng H.Perspectives on in situ electron microscopy.Ultramicroscopy2017;180:188-96

[53]

Ross FM.Opportunities and challenges in liquid cell electron microscopy.Science2015;350:aaa9886

[54]

Schneider NM,Mendel BJ,Ross FM.Electron-water interactions and implications for liquid cell electron microscopy.J Phys Chem C2014;118:22373-82

[55]

Nukala P,Antoja-lleonart J.In situ heating studies on temperature-induced phase transitions in epitaxial Hf0.5Zr0.5O2/La0.67Sr0.33MnO3 heterostructures.Appl Phys Lett2021;118:062901

[56]

Xu W,Grimley ED,Lebeau JM.In-situ real-space imaging of single crystal surface reconstructions via electron microscopy.Appl Phys Lett2016;109:201601

[57]

Zhu Y,Li B.Twist-to-untwist evolution and cation polarization behavior of hybrid halide perovskite nanoplatelets revealed by cryogenic transmission electron microscopy.J Phys Chem Lett2021;12:12187-95

[58]

Chen Z,Ringer SP.Manipulation of nanoscale domain switching using an electron beam with omnidirectional electric field distribution.Phys Rev Lett2016;117:027601

[59]

Chen Z,Huang Q.Giant tuning of ferroelectricity in single crystals by thickness engineering.Sci Adv2020;6:eabc7156 PMCID:PMC7556833

[60]

Chen Z,Wang F,Luo H.Stress-induced reversible and irreversible ferroelectric domain switching.Appl Phys Lett2018;112:152901

[61]

Chen Z,Wang F.Facilitation of ferroelectric switching via mechanical manipulation of hierarchical nanoscale domain structures.Phys Rev Lett2017;118:017601

[62]

Huang Q,Chen Z.Formation of head/tail-to-body charged domain walls by mechanical stress.ACS Appl Mater Interfaces2023;15:2313-8

[63]

Taheri ML,Arslan I.Current status and future directions for in situ transmission electron microscopy.Ultramicroscopy2016;170:86-95 PMCID:PMC5100813

[64]

Fan Z,Baumann D.In situ transmission electron microscopy for energy materials and devices.Adv Mater2019;31:e1900608

[65]

Deng Y,Pekin TC.Functional materials under stress: in situ TEM observations of structural evolution.Adv Mater2020;32:e1906105

[66]

Muller DA,Thomas MG,Fitting L.Room design for high-performance electron microscopy.Ultramicroscopy2006;106:1033-40

[67]

Ophus C,Nelson CT.Correcting nonlinear drift distortion of scanning probe and scanning transmission electron microscopies from image pairs with orthogonal scan directions.Ultramicroscopy2016;162:1-9

[68]

Jones L.Identifying and correcting scan noise and drift in the scanning transmission electron microscope.Microsc Microanal2013;19:1050-60

[69]

Schnedler M,Portz V,Dunin-Borkowski RE.Correction of nonlinear lateral distortions of scanning probe microscopy images.Ultramicroscopy2014;136:86-90

[70]

Berkels B,Blom DA,Sharpley RC.Optimized imaging using non-rigid registration.Ultramicroscopy2014;138:46-56

[71]

Berkels B.Joint non-rigid image registration and reconstruction for quantitative atomic resolution scanning transmission electron microscopy.Ultramicroscopy2019;198:49-57

[72]

Jones L,Pennycook TJ.Smart align - a new tool for robust non-rigid registration of scanning microscope data.Adv Struct Chem Imaging2015;1:8

[73]

Ihara S,Yoshinaga M,Murayama M.Deep learning-based noise filtering toward millisecond order imaging by using scanning transmission electron microscopy.Sci Rep2022;12:13462 PMCID:PMC9356044

[74]

Sang X.Revolving scanning transmission electron microscopy: correcting sample drift distortion without prior knowledge.Ultramicroscopy2014;138:28-35

[75]

Dycus JH,Sang X.Accurate nanoscale crystallography in real-space using scanning transmission electron microscopy.Microsc Microanal2015;21:946-52

[76]

Borisevich A,Chang HJ.Mapping octahedral tilts and polarization across a domain wall in BiFeO3 from Z-contrast scanning transmission electron microscopy image atomic column shape analysis.ACS Nano2010;4:6071-9

[77]

Zuo JM,Kim H,Gao W.Lattice and strain analysis of atomic resolution Z-contrast images based on template matching.Ultramicroscopy2014;136:50-60

[78]

Kirkland EJ,Silcox J.Simulation of annular dark field stem images using a modified multislice method.Ultramicroscopy1987;23:77-96

[79]

Barthel J.Dr. Probe: A software for high-resolution STEM image simulation.Ultramicroscopy2018;193:1-11

[80]

Lazić I.Chapter three - analytical review of direct stem imaging techniques for thin samples.Adv Imaging Electron Phys2017;199:75-184.

[81]

Sang X,LeBeau JM.Atom column indexing: atomic resolution image analysis through a matrix representation.Microsc Microanal2014;20:1764-71

[82]

Nord M,MacLaren I,Holmestad R.Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting.Adv Struct Chem Imaging2017;3:9 PMCID:PMC5306439

[83]

Backer A, van den Bos KHW, Van den Broek W, Sijbers J, Van Aert S. StatSTEM: an efficient approach for accurate and precise model-based quantification of atomic resolution electron microscopy images.Ultramicroscopy2016;171:104-16

[84]

Zhang Q,Jin CH,Lin F.CalAtom: a software for quantitatively analysing atomic columns in a transmission electron microscope image.Ultramicroscopy2019;202:114-20

[85]

Wang Y,Sigle W,van Aken PA.Oxygen octahedra picker: a software tool to extract quantitative information from STEM images.Ultramicroscopy2016;168:46-52

[86]

Du H.DMPFIT: a tool for atomic-scale metrology via nonlinear least-squares fitting of peaks in atomic-resolution TEM images.Nanomanuf Metrol2022;5:101-11

[87]

Sang X,Niu C,Lebeau JM.Direct observation of charge mediated lattice distortions in complex oxide solid solutions.Appl Phys Lett2015;106:061913

[88]

Oni AA,Raju SV.Large area strain analysis using scanning transmission electron microscopy across multiple images.Appl Phys Lett2015;106:011601

[89]

Hytch MJH,Kilaas R.Quantitative measurement of displacement and strain fields from HREM micrographs.Ultramicroscopy1998;74:131-46

[90]

Rouviere J,Martin Y,Cooper D.Improved strain precision with high spatial resolution using nanobeam precession electron diffraction.Appl Phys Lett2013;103:241913

[91]

Zhao L,Gao J,Li JF.Lead-free antiferroelectric silver niobate tantalate with high energy storage performance.Adv Mater2017;29:1701824

[92]

Jeong IK,Lee JK.Direct observation of the formation of polar nanoregions in Pb(Mg1/3Nb2/3)O3 using neutron pair distribution function analysis.Phys Rev Lett2005;94:147602

[93]

Wu H,Wu J,Pennycook SJ.Microstructural origins of high piezoelectric performance: a pathway to practical lead-free materials.Adv Funct Mater2019;29:1902911

[94]

Fiebig M.Revival of the magnetoelectric effect.J Phys D Appl Phys2005;38:R123

[95]

Moore K,Griffin SM.Charged domain wall and polar vortex topologies in a room-temperature magnetoelectric multiferroic thin film.ACS Appl Mater Interfaces2022;14:5525-36 PMCID:PMC8815039

[96]

de la Peña F,Fauske VT.Hyperspy/hyperspy: release v1.7.3. 2022.

[97]

O’Connell EN,McFall E.TopoTEM: a python package for quantifying and visualizing scanning transmission electron microscopy data of polar topologies.Microsc Microanal2022;28:1444-52

[98]

Cabral MJ,Dickey EC.Gradient chemical order in the relaxor Pb(Mg1/3Nb2/3)O3.Appl Phys Lett2018;112:082901

[99]

Xu M,LeBeau JM.Correlating local chemical and structural order using geographic information systems-based spatial statistics.Ultramicroscopy2023;243:113642

[100]

Savitzky BH,Hughes LA.py4DSTEM: a software package for four-dimensional scanning transmission electron microscopy data analysis.Microsc Microanal2021;27:712-43

[101]

Savitzky BH,Bustillo KC.py4DSTEM: open source software for 4D-STEM data analysis.Microsc Microanal2019;25:124-5

[102]

Wang S,Smith JG.AutoDisk: automated diffraction processing and strain mapping in 4D-STEM.Ultramicroscopy2022;236:113513

AI Summary AI Mindmap
PDF

76

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/