Metal-organic frameworks as promising flame retardants for polymeric materials

Boyou Hou , Ye-Tang Pan , Pingan Song

Microstructures ›› 2023, Vol. 3 ›› Issue (4) : 2023039

PDF
Microstructures ›› 2023, Vol. 3 ›› Issue (4) :2023039 DOI: 10.20517/microstructures.2023.37
Review

Metal-organic frameworks as promising flame retardants for polymeric materials

Author information +
History +
PDF

Abstract

This article presents a vision for advancing the development of next-generation flame-retardant materials through the utilization of metal-organic frameworks (MOFs). The proposed vision is centered on four key areas: industrialization, multifunctionality, ligand synthesis, and derivatives. By optimizing production processes, customizing MOFs for specific properties and applications, and developing novel ligands and derivatives, the effectiveness and versatility of MOFs as flame-retardant materials can be significantly enhanced. This vision represents a promising direction for the field that has the potential to address critical safety concerns across various industries.

Keywords

Microstructures / metal-organic frameworks / multifunction / industrialization / flame retardant

Cite this article

Download citation ▾
Boyou Hou, Ye-Tang Pan, Pingan Song. Metal-organic frameworks as promising flame retardants for polymeric materials. Microstructures, 2023, 3(4): 2023039 DOI:10.20517/microstructures.2023.37

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li H,O'keeffe M.Design and synthesis of an exceptionally stable and highly porous metal-organic framework.Nature1999;402:276-9

[2]

Huo J,Garai A.MOF-polymer composite microcapsules derived from Pickering emulsions.Adv Mater2013;25:2717-22

[3]

Hou Y,Gui Z.Preparation of metal-organic frameworks and their application as flame retardants for polystyrene.Ind Eng Chem Res2017;56:2036-45.

[4]

Shi X,Cao Y,Huo C.Degradable poly(lactic acid)/metal-organic framework nanocomposites exhibiting good mechanical, flame retardant, and dielectric properties for the fabrication of disposable electronics.Ind Eng Chem Res2017;56:3887-94

[5]

Chen W,Qiu R,Hou Y.Investigation of UiO-66 as flame retardant and its application in improving fire safety of polystyrene.Macromol Res2020;28:42-50

[6]

Zhao S,Zhou Q,Zhou K.In situ self-assembly of zeolitic imidazolate frameworks on the surface of flexible polyurethane foam: towards for highly efficient oil spill cleanup and fire safety.Appl Surf Sci2020;506:144700

[7]

Wang M,Jiang J,Li M.Influence of zeolitic imidazolate framework-8 on the thermal stabilization of poly(vinyl chloride).Polym Degrad Stab2018;149:112-8

[8]

Nabipour H,Wang X,Hu Y.Highly flame retardant zeolitic imidazole framework-8@cellulose composite aerogels as absorption materials for organic pollutants.Cellulose2020;27:2237-51

[9]

Nabipour H,Wang X,Hu Y.Zeolitic imidazolate framework-8/polyvinyl alcohol hybrid aerogels with excellent flame retardancy.Compos A Appl Sci Manuf2020;129:105720

[10]

Seidi F,Taghizadeh M.Metal-organic framework (MOF)/epoxy coatings: a review.Materials2020;13:2881 PMCID:PMC7345547

[11]

Sai T,Guo Z.Deposition growth of Zr-based MOFs on cerium phenylphosphonate lamella towards enhanced thermal stability and fire safety of polycarbonate.Compos B Eng2020;197:108064

[12]

Li A,Chen R,Li W.Fabrication of zeolitic imidazolate frameworks on layered double hydroxide nanosheets to improve the fire safety of epoxy resin.Compos A Appl Sci Manuf2018;112:558-71

[13]

Wang X,Wang W.The flammability and mechanical properties of poly (lactic acid) composites containing Ni-MOF nanosheets with polyhydroxy groups.Compos B Eng2020;183:107568

[14]

Xie J,Zhang M,Wang X.Improving the flame retardancy of polypropylene by nano metal-organic frameworks and bioethanol coproduct.Fire Mater2019;43:373-80

[15]

Zheng Y,Zhou K.A novel exploration of metal-organic frameworks in flame-retardant epoxy composites.J Therm Anal Calorim2019;138:905-14

[16]

Wang H,Guo J.Preparation of cobalt-based metal organic framework and its application as synergistic flame retardant in thermoplastic polyurethane (TPU).Compos B Eng2020;182:107498

[17]

Cheng J,Li S,Wang D.Preparation of zeolitic imidazolate frameworks and their application as flame retardant and smoke suppression agent for rigid polyurethane foams.Polymers2020;12:347 PMCID:PMC7077485

[18]

Wang G,Chen R,Liu Y.Synergistic effect between zeolitic imidazolate framework-8 and expandable graphite to improve the flame retardancy and smoke suppression of polyurethane elastomer.J Appl Polymer Sci2020;137:48048

[19]

Qian Z,Xiao Y.Targeted modification of black phosphorus by MIL-53(Al) inspired by “Cannikin's Law” to achieve high thermal stability of flame retardant polycarbonate at ultra-low additions.Compos B Eng2022;238:109943

[20]

Ma T,Wang R.Thermal degradation and carbonization mechanism of Fe-based metal-organic frameworks onto flame-retardant polyethylene terephthalate.Polymers2023;15:224 PMCID:PMC9823990

[21]

Zhao H,Zhan Y.Upgrading the pore-size scale of MIL-53 from microporous to macroporous for adsorbing triethyl phosphate and reducing the fire risk of polystyrene.Compos A Appl Sci Manuf2022;159:107003

[22]

Xu B,Wang G,Xu J.Zeolitic imidazolate frameworks-8 modified graphene as a green flame retardant for reducing the fire risk of epoxy resin.Polym Adv Techs2018;29:1733-43

[23]

Sai T,Guo Z.A Zr-based metal organic frameworks towards improving fire safety and thermal stability of polycarbonate.Compos B Eng2019;176:107198

[24]

Salmeia K,Liang S.An overview of mode of action and analytical methods for evaluation of gas phase activities of flame retardants.Polymers2015;7:504-26

[25]

Molyneux S,Hull TR.The effect of gas phase flame retardants on fire effluent toxicity.Polym Degrad Stab2014;106:36-46

[26]

Schartel B,Dittrich B.Flame retardancy of polymers: the role of specific reactions in the condensed phase.Macromol Mater Eng2016;301:9-35

[27]

Bao C,Yuan B,Song L.Functionalized graphene oxide for fire safety applications of polymers: a combination of condensed phase flame retardant strategies.J Mater Chem2012;22:23057-63

[28]

Xu Z,Hou Y.The combustion and pyrolysis process of flame-retardant polystyrene/cobalt-based metal organic frameworks (MOF) nanocomposite.Combust Flame2021;226:108-16

[29]

Laoutid F,Alexandre M,Dubois Ph.New prospects in flame retardant polymer materials: from fundamentals to nanocomposites.Mater Sci Eng R Rep2009;63:100-25

[30]

Ru J,Wang F,Du X.UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: synthesis, applications and adsorption mechanism.Ecotoxicol Environ Saf2021;208:111577

[31]

Tomar S.Review on synthesis and application of MIL-53.Mater Today Proc2021;43:3291-6

[32]

Şahin F,Kalıpçılar H.Synthesis of ZIF-7, ZIF-8, ZIF-67 and ZIF-L from recycled mother liquors.Microporous Mesoporous Mater2018;261:259-67

[33]

Lee Y,Cho H,Kim S.ZIF-8: a comparison of synthesis methods.Chem Eng J2015;271:276-80

[34]

Bagi SD,Román-leshkov Y.Solvothermal crystallization kinetics and control of crystal size distribution of MOF-808 in a continuous flow reactor.Cryst Growth Des2021;21:6529-36

[35]

Batten MP,Hadley T.Continuous flow production of metal-organic frameworks.Curr Opin Chem Eng2015;8:55-9

[36]

Dunne PW,Walton RI.Towards scalable and controlled synthesis of metal-organic framework materials using continuous flow reactors.React Chem Eng2016;1:352-60

[37]

Amery N, Abid H, Al-saadi S, Wang S, Liu S. Facile directions for synthesis, modification and activation of MOFs.Mater Today Chem2020;17:100343

[38]

Liu X,Wu Y.Recent advances in the shaping of metal-organic frameworks.Inorg Chem Front2020;7:2840-66

[39]

Rubio-Martinez M,Thornton AW,Maspoch D.New synthetic routes towards MOF production at scale.Chem Soc Rev2017;46:3453-80

[40]

Bagi S,Rojas-buzo S,Román-leshkov Y.A continuous flow chemistry approach for the ultrafast and low-cost synthesis of MOF-808.Green Chem2021;23:9982-91

[41]

Kochetygov I,Espín J.A simple, transition metal catalyst-free method for the design of complex organic building blocks used to construct porous metal-organic frameworks.Angew Chem Int Ed Eng2023;62:e202215595

[42]

Shen R,Zhang Z,Wang Q.Metal-organic framework as an efficient synergist for intumescent flame retardants against highly flammable polypropylene.Ind Eng Chem Res2022;61:7292-302

[43]

Xu Y,Ma G.Preparation of a cobalt metal-organic framework (Co-MOF) and its application as a polypropylene flame retardant by compounding with melamine polyphosphate.Polym Test2022;116:107765

[44]

Chen X,Li S.Copper metal-organic framework toward flame-retardant enhancement of thermoplastic polyurethane elastomer composites based on ammonium polyphosphate.Polym Adv Technol2021;32:2829-42

[45]

Li H,Qi P.Fabrication of a hybrid from metal organic framework and sepiolite (ZIF-8@SEP) for reducing the fire hazards in thermoplastic polyurethane.Appl Clay Sci2022;216:106376

[46]

Liu Q,Li H,Gu X.Constructing a novel synergistic flame retardant by hybridization of zeolitic imidazolate framework-67 and graphene oxide for thermoplastic polyurethane.Poly Adv Technol2022;33:2374-85

[47]

Yue Z,Yang D.In situ growth of nano-MOFs on ammonium polyphosphate particles for boosting flame retardancy, smoke suppression and mechanical properties of epoxy.J Mater Sci2022;57:20082-94

[48]

Jiang J,Zheng Y.A novel synergistic flame retardant of hexaphenoxycyclotriphosphazene for epoxy resin.Polymers2021;13:3648 PMCID:PMC8588180

[49]

Quan Y,Schweizer C.Synergistic effects of zeolitic imidazolate frameworks (ZIFs) with different transition metals on intumescent flame-retarded polypropylene composites: a comparative study.J Mater Sci Technol2023;155:102-10

[50]

Escobar-hernandez HU,Papadaki MI,Zhou H.Hazard evaluation of metal-organic framework synthesis and scale-up: a laboratory safety perspective.ACS Chem Health Saf2021;28:358-68

[51]

Quan Y,Hua Y,Wang Q.Process elucidation and hazard analysis of the metal-organic framework scale-up synthesis: a case study of ZIF-8.Ind Eng Chem Res2023;62:5035-41

[52]

Quan Y,Ma R,Wang Q.Sustainable and efficient manufacturing of metal-organic framework-based polymer nanocomposites by reactive extrusion.ACS Sustain Chem Eng2022;10:7216-22

[53]

Novoselov KS,Morozov SV.Electric field effect in atomically thin carbon films.Science2004;306:666-9

[54]

Murdock AT,Britton TB.Controlling the orientation, edge geometry, and thickness of chemical vapor deposition graphene.ACS Nano2013;7:1351-9

[55]

Hernandez Y,Lotya M.High-yield production of graphene by liquid-phase exfoliation of graphite.Nat Nanotechnol2008;3:563-8

[56]

Agarwal V.Strategies for reduction of graphene oxide - a comprehensive review.Chem Eng J2021;405:127018

[57]

Zurutuza A.Challenges and opportunities in graphene commercialization.Nat Nanotechnol2014;9:730-4

[58]

Milana S.The lab-to-fab journey of 2D materials.Nat Nanotechnol2019;14:919-21

[59]

Zhou Y,Chu F.High-performance flexible polyurethane foam based on hierarchical BN@MOF-LDH@APTES structure: enhanced adsorption, mechanical and fire safety properties.J Colloid Interface Sci2022;609:794-806

[60]

Piao J,Ren J.MOF-derived LDH modified flame-retardant polyurethane sponge for high-performance oil-water separation: Interface engineering design based on bioinspiration.J Hazard Mater2023;444:130398

[61]

Zhao X,Shao Y.Silver nanoparticle-modified 2D MOF nanosheets for photothermally enhanced silver ion release antibacterial treatment.Acta Physico Chimica Sinica2023;39:2211043

[62]

Majidi R,Ramezanzadeh B.Weathering resistance (UV-shielding) improvement of a polyurethane automotive clear-coating applying metal-organic framework (MOF) modified GO nano-flakes (GO-ZIF-7).Polym Degrad Stab2023;207:110211

[63]

Wang C,Tang J.New strategies for novel MOF-derived carbon materials based on nanoarchitectures.Chem2020;6:19-40

[64]

Ren J,Zhu H.Recent progress on MOF-derived carbon materials for energy storage.Carbon Energy2020;2:176-202

[65]

Marpaung F,Khan JH.Metal-organic framework (MOF)-derived nanoporous carbon materials.Chem Asian J2019;14:1331-43

[66]

Chaikittisilp W,Yamauchi Y.A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications.J Mater Chem A2013;1:14-9

[67]

Hou Y,Chu F.A review on metal-organic hybrids as flame retardants for enhancing fire safety of polymer composites.Compos B Eng2021;221:109014

[68]

Sai T,Shen H.Fabrication and mechanism study of cerium-based P, N-containing complexes for reducing fire hazards of polycarbonate with superior thermostability and toughness.ACS Appl Mater Interfaces2021;13:30061-75

[69]

Lu X,Gu X.Improving the flame retardancy of sustainable lignin-based epoxy resins using phosphorus/nitrogen treated cobalt metal-organic frameworks.Mater Today Chem2022;26:101184

[70]

Zulys A,Muhadzib N.Biological metal-organic frameworks (Bio-MOFs) for CO2 capture.Ind Eng Chem Res2021;60:37-51

[71]

Nabipour H,Wang X,Hu Y.Adenine as an efficient adsorbent for zinc ions removal from wastewater to in situ form bio-based metal-organic frameworks: a novel approach to preparing fire-safe polymers.Compos A Appl Sci Manuf2022;161:107099

[72]

Zhou Y,Noor N.A facile and sustainable approach for simultaneously flame retarded, UV protective and reinforced poly(lactic acid) composites using fully bio-based complexing couples.Compos B Eng2021;215:108833

[73]

Hamisu AM,Wibowo AC.Cation exchange in metal-organic frameworks (MOFs): the hard-soft acid-base (HSAB) principle appraisal.Inorganica Chim Acta2020;511:119801

[74]

Bao S,Guan B,Terasaki O.A green selective water-etching approach to MOF@mesoporous SiO2 yolk-shell nanoreactors with enhanced catalytic stabilities.Matter2020;3:498-508

[75]

Lee S,Oh M.Atypical hybrid metal-organic frameworks (MOFs): a combinative process for MOF-on-MOF growth, etching, and structure transformation.Angew Chem2020;132:1343-9

[76]

Narciso J,Delgado-marín JJ,Olsbye U.New route for the synthesis of Co-MOF from metal substrates.Microporous Mesoporous Mater2021;324:111310

[77]

Zhang Z,Yuan Y,Wang DY.Confined dispersion of zinc hydroxystannate nanoparticles into layered bimetallic hydroxide nanocapsules and its application in flame-retardant epoxy nanocomposites.ACS Appl Mater Interfaces2019;11:40951-60

[78]

Hou B,Ur Rehman Z.Precise control of a yolk-double shell metal-organic framework-based nanostructure provides enhanced fire safety for epoxy nanocomposites.ACS Appl Mater Interfaces2022;14:14805-16

[79]

Song K,Pan YT.Metal-organic framework-derived bird's nest-like capsules for phosphorous small molecules towards flame retardant polyurea composites.J Colloid Interface Sci2023;643:489-501

[80]

Song K,Pan Y.The influence on flame retardant epoxy composites by a bird’s nest-like structure of Co-based isomers evolved from zeolitic imidazolate framework-67.Polym Degrad Stab2023;211:110318

[81]

Hou B,Lu H.Multielement flame-retardant system constructed with metal POSS-organic frameworks for epoxy resin.ACS Appl Mater Interfaces2022;14:49326-37

[82]

Song K,Ur Rehman Z.“Sloughing” of metal-organic framework retaining nanodots via step-by-step carving and its flame-retardant effect in epoxy resin.Chem Eng J2022;448:137666

[83]

Wang X,Zheng Y,Fu H.Study on novel flame retarded LDH-TDI-HEA-VTES-acrylate composites and their flame retardant mechanism.React Funct Polym2020;147:104371

[84]

Wang H,Su F.Core-shell ZIF67@ZIF8 modified with phytic acid as an effective flame retardant for improving the fire safety of epoxy resins.ACS Omega2022;7:21664-74 PMCID:PMC9245132

[85]

Hou Y,Ma S,Hu W.Rapid synthesis of oxygen-rich covalent C2N (CNO) nanosheets by sacrifice of HKUST-1: advanced metal-free nanofillers for polymers.ACS Appl Mater Interfaces2018;10:32688-97

AI Summary AI Mindmap
PDF

89

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/