Investigation of BiFeO3-BaTiO3 lead-free piezoelectric ceramics with nonstoichiometric bismuth

Hailan Qin , Jianwei Zhao , Xiaoxin Chen , Hongtian Li , Shenghao Wang , Yuxiao Du , Huanfu Zhou , Peifeng Li , Dawei Wang

Microstructures ›› 2023, Vol. 3 ›› Issue (4) : 2023035

PDF
Microstructures ›› 2023, Vol. 3 ›› Issue (4) :2023035 DOI: 10.20517/microstructures.2023.34
Research Article

Investigation of BiFeO3-BaTiO3 lead-free piezoelectric ceramics with nonstoichiometric bismuth

Author information +
History +
PDF

Abstract

BiFeO3-BaTiO3 (BF-BT)-based lead-free ceramics are promising piezoelectric materials exhibiting high Curie temperatures and excellent electrochemical properties. In this study, 0.70Bi1+xFeO3-0.30BaTiO3 (B1+xF-BT, x = -0.01, 0.00, 0.01, 0.02, 0.03, 0.04) lead-free piezoelectric ceramics were successfully fabricated via the conventional solid-phase reaction process. Crystallographic structure, microstructure, dielectric, impedance, ferroelectric, and piezoelectric properties among different compositions were comprehensively investigated. The X-ray diffraction analysis confirmed that all compositions exhibited a typical perovskite structure with a cubic-rhombohedral phase mixture. The grain size of ceramics tends to increase as the Bi2O3 content rises. In particular, the backscattered electron images and energy dispersive analysis revealed prominent core-shell microstructure within grains. Notably, the BF-BT ceramic containing 1% excess Bi displayed the maximum $$\ \large d_{33}$$ ~217 pC/N and $$\ \large d_{33}^{*}$$ ~243 pm/V accompanied by a high Curie temperature of 515 °C. The findings demonstrate the potential feasibility of BF-BT ceramics in the field of lead-free piezoelectric ceramics.

Keywords

Piezoelectric ceramics / lead-free / BF-BT / bismuth / nonstoichiometric

Cite this article

Download citation ▾
Hailan Qin, Jianwei Zhao, Xiaoxin Chen, Hongtian Li, Shenghao Wang, Yuxiao Du, Huanfu Zhou, Peifeng Li, Dawei Wang. Investigation of BiFeO3-BaTiO3 lead-free piezoelectric ceramics with nonstoichiometric bismuth. Microstructures, 2023, 3(4): 2023035 DOI:10.20517/microstructures.2023.34

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Saito Y,Tani T.Lead-free piezoceramics.Nature2004;432:84-7

[2]

Wang D,Murakami S.BiFeO3-BaTiO3: a new generation of lead-free electroceramics.J Adv Dielect2018;8:1830004

[3]

Murakami S,Mostaed A.High strain (0.4%) Bi(Mg2/3Nb1/3)O3-BaTiO3-BiFeO3 lead-free piezoelectric ceramics and multilayers.J Am Ceram Soc2018;101:5428-42

[4]

Panda PK.PZT to Lead Free Piezo Ceramics: a review.Ferroelectrics2015;474:128-43

[5]

Souza-Araujo J,Hauser-Davis RA,Lima MO.Human risk assessment of toxic elements (As, Cd, Hg, Pb) in marine fish from the Amazon.Chemosphere2022;301:134575

[6]

McFarland MJ,Reuben A.Half of US population exposed to adverse lead levels in early childhood.Proc Natl Acad Sci USA2022;119:e2118631119 PMCID:PMC8931364

[7]

Liu K,Marwat MA.Large electrostrain in low-temperature sintered NBT-BT-0.025FN incipient piezoceramics.J Am Ceram Soc2020;103:3739-47

[8]

Zhang Y,Wang G.Enhanced mechanical energy harvesting capability in sodium bismuth titanate based lead-free piezoelectric.J Alloys Compd2020;825:154020

[9]

Wang D,Khesro A.Composition and temperature dependence of structure and piezoelectricity in (1-x)(K1-yNay)NbO3-x(Bi1/2Na1/2)ZrO3 lead-free ceramics.J Am Ceram Soc2017;100:627-37

[10]

Khesro A,Hussain F.Temperature dependent piezoelectric properties of lead-free (1-x)K0.6Na0.4NbO3-xBiFeO3 ceramics.Front Mater2020;7:140

[11]

Zhang S,Aulbach E,Rödel J.Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system.Appl Phys Lett2007;91:112906

[12]

Zheng T,Xiao D.Giant d33 in nonstoichiometric (K,Na)NbO3-based lead-free ceramics.Scr Mater2015;94:25-7

[13]

Shi H,Wang R.Full set of material constants of (Na0.5K0.5)NbO3-BaZrO3-(Bi0.5Li0.5)TiO3 lead-free piezoelectric ceramics at the morphotropic phase boundary.J Alloys Compd2016;655:290-5

[14]

Bai W,Li L,Shen B.Structure evolution and large strain response in BNT-BT lead-free piezoceramics modified with Bi(Ni0.5Ti0.5)O3.J Alloys Compd2015;649:772-81

[15]

Hiruma Y,Takenaka T.Formation of morphotropic phase boundary and electrical properties of (Bi1/2Na1/2)TiO3-Ba(Al1/2Nb1/2)O3 solid solution ceramics.Jpn J Appl Phys2009;48:09KC08

[16]

Dittmer R,Aulbach E,Tan X.Electric-field-induced polarization and strain in 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3 under uniaxial stress.Acta Mater2013;61:1350-8

[17]

Li T,Ke X.Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics.Acta Mater2017;128:337-44

[18]

Wang G,Zhu W.Multiple local symmetries result in a common average polar axis in high-strain BiFeO3-based ceramics.Phys Rev Lett2023;130:076801

[19]

Lu Z,Li L.In situ poling X-ray diffraction studies of lead-free BiFeO3-SrTiO3 ceramics.Mater Today Phys2021;19:100426

[20]

Wang G,Murakami S.Origin of the large electrostrain in BiFeO3-BaTiO3 based lead-free ceramics.J Mater Chem A2019;7:21254-63

[21]

Li Z,Song W.Mg-substitution for promoting magnetic and ferroelectric properties of BiFeO3 multiferroic nanoparticles.Mater Lett2016;175:207-11

[22]

Wang D,Liu F.Sol-gel synthesis of Nd-doped BiFeO3 multiferroic and its characterization.Ceram Int2015;41:8768-72

[23]

Sono N,Kida N,Okamoto H.Terahertz-field-induced changes of electronic states associated with a polarization modulation in BiFeO3.J Phys Soc Jpn2021;90:033703

[24]

Huang S,Xia Z.Multiferroic behavior from synergetic response of multiple ordering parameters in BiFeO3 single crystal under high magnetic field up to 50 tesla.J Appl Phys2020;127:044101

[25]

Białek M,Rønnow H.Terahertz-optical properties of a bismuth ferrite single crystal.Phys Rev B2019;99:064429

[26]

Blázquez Martínez A,Girod S.Strain engineering of the electro-optic effect in polycrystalline BiFeO3 films [invited].Opt Mater Express2023;13:2061-70

[27]

Yi J,Shu L,Li JF.Outstanding ferroelectricity in Sol-gel-derived polycrystalline BiFeO3 films within a wide thickness range.ACS Appl Mater Interfaces2022;14:21696-704

[28]

Zhou Y,Tian S.Switchable ferroelectric diode and photovoltaic effects in polycrystalline BiFeO3 thin films grown on transparent substrates.Thin Solid Films2020;698:137851

[29]

Önal F,Zarbali M.Magnetization and magnetic resonance in sol-gel derived polycrystalline BiFeO3 film.J Magn Magn Mater2019;477:92-8

[30]

Song H.Physical properties of Cr-doped epitaxial BiFeO3 thin films influenced by ferroelectric domain structures.J Phys Chem Solids2023;177:111306

[31]

Ding J,Hu J.Switchable ferroelectric photovoltaic in the low bandgap cobalt-substituted BiFeO3 epitaxial thin films.Appl Surf Sci2022;606:154898

[32]

Lee JY,Unithrattil S.The role of intermediate S-polymorph towards high piezoelectricity in La-doped BiFeO3 epitaxial thin films.Acta Mater2021;207:116683

[33]

Pei W,You D.Enhanced photovoltaic effect in Ca and Mn co-doped BiFeO3 epitaxial thin films.Appl Surf Sci2020;530:147194

[34]

Zhou Z,Liao Z,Zhu J.Ferroelectric domains and phase transition of sol-gel processed epitaxial Sm-doped BiFeO3 (001) thin films.J Mater2018;4:27-34

[35]

Lahmar A,Habouti S,Solterbeck C.Off-stoichiometry effects on BiFeO3 thin films.Solid State Ionics2011;202:1-5

[36]

Wang J,Zheng H.Epitaxial BiFeO3 multiferroic thin film heterostructures.Science2003;299:1719-22

[37]

Rojac T,Malic B.BiFeO3 ceramics: processing, electrical, and electromechanical properties.J Am Ceram Soc2014;97:1993-2011

[38]

Rojac T,Budic B,Damjanovic D.Strong ferroelectric domain-wall pinning in BiFeO3 ceramics.J Appl Phys2010;108:074107

[39]

Ismailzade IH,Alekberov AI.Investigation of the magnetoelectric (ME)H effect in solid solutions of the systems BiFeO3-BaTiO3 and BiFeO3-PbTiO3 .Phys Status Solid1981;68:K81-5

[40]

Wei Y,Zhu J,Jia J.Dielectric, ferroelectric, and piezoelectric properties of BiFeO3-BaTiO3 ceramics.J Am Ceram Soc2013;96:3163-8

[41]

Habib M,Kim DJ.Phase evolution and origin of the high piezoelectric properties in lead-free BiFeO3-BaTiO3 ceramics.Ceram Int2020;46:22239-52

[42]

Kumar MM,Suryanarayana SV.Structure property relations in BiFeO3/BaTiO3 solid solutions.J Appl Phys2000;87:855-62

[43]

Zheng T,Wu J.Bi nonstoichiometry and composition engineering in (1-x)Bi1+yFeO3+3y/2-xBaTiO3 ceramics.RSC Adv2016;6:90831-9

[44]

Yang L,Jiang X,Nie X.Enhanced ferroelectric and piezoelectric properties of BiFeO3-BaTiO3 lead-free ceramics by simultaneous optimization of Bi compensation and sintering conditions.Ceram Int2022;48:12866-74

[45]

Yi W,Liu X.Excellent piezoelectric performance of Bi-compensated 0.69BiFeO3-0.31BaTiO3 lead-free piezoceramics.J Mater Sci Mater Electron2021;32:22637-44

[46]

Zhang G,Lu Y.Phase structure and electrical properties of (1-x)Bi1+yFeO3-xBaTiO3 lead-free ceramics with different Bi contents.J Mater Sci Mater Electron2021;32:10289-98

[47]

Ahmed T,Bae J.Role of Bi chemical pressure on electrical properties of BiFeO3-BaTiO3-based ceramics.Solid State Sci2021;114:106562

[48]

Xun B,Zhang B.Enhanced piezoelectric properties of 0.7BiFeO3-0.3BaTiO3 lead-free piezoceramics with high Curie temperature by optimizing Bi self-compensation.Ceram Int2019;45:24382-91

[49]

Jian J,Fu D,Cheng J.Structure and enhanced electrical properties of high-temperature BiFeO3-PbTiO3-BaZrO3 ceramics with bismuth excess.Ceram Int2018;44:21774-8

[50]

Zhu L,Li S.Large piezoelectric responses of Bi(Fe,Mg,Ti)O3-BaTiO3 lead-free piezoceramics near the morphotropic phase boundary.J Alloys Compd2017;727:382-9

[51]

Chen J.Enhanced thermal stability of lead-free high temperature 0.75BiFeO3-0.25BaTiO3 ceramics with excess Bi content.J Alloys Compd2014;589:115-9

[52]

Zhou C,Zhou Q,Li W.Effects of Bi excess on the structure and electrical properties of high-temperature BiFeO3-BaTiO3 piezoelectric ceramics.J Mater Sci Mater Electron2013;24:1685-9

[53]

Murakami S,Wang D,Sinclair DC.Optimising dopants and properties in BiMeO3 (Me = Al, Ga, Sc, Y, Mg2/3Nb1/3, Zn2/3Nb1/3, Zn1/2Ti1/2) lead-free BaTiO3-BiFeO3 based ceramics for actuator applications.J Eur Ceram Soc2018;38:4220-31

[54]

Calisir I.Chemical heterogeneity and approaches to its control in BiFeO3-BaTiO3 lead-free ferroelectrics.J Mater Chem C2018;6:134-46

[55]

Wang D,Li W.High energy storage density and large strain in Bi(Zn2/3Nb1/3)O3-doped BiFeO3-BaTiO3 ceramics.ACS Appl Energy Mater2018;1:4403-12

[56]

Calisir I,Kleppe AK.Optimisation of functional properties in lead-free BiFeO3-BaTiO3 ceramics through La3+ substitution strategy.J Mater Chem A2018;6:5378-97

[57]

Lu Z,Bao W.Superior energy density through tailored dopant strategies in multilayer ceramic capacitors.Energy Environ Sci2020;13:2938-48

AI Summary AI Mindmap
PDF

33

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/