Synthesis strategies of metal-organic frameworks for CO2 capture

Meng Sun , Xiaokang Wang , Fei Gao , Mingming Xu , Weidong Fan , Ben Xu , Daofeng Sun

Microstructures ›› 2023, Vol. 3 ›› Issue (4) : 2023032

PDF
Microstructures ›› 2023, Vol. 3 ›› Issue (4) :2023032 DOI: 10.20517/microstructures.2023.32
Review

Synthesis strategies of metal-organic frameworks for CO2 capture

Author information +
History +
PDF

Abstract

The high consumption of fossil energy has led to increasing concentrations of carbon dioxide (CO2) in the atmosphere, making carbon capture and separation a research hotspot in this century. As novel porous materials, metal-organic frameworks (MOFs) are widely used for CO2 capture due to their unique structures and tunable properties. Currently, several relatively mature strategies have been applied to synthesize MOFs for CO2 capture. Herein, we investigate strategies for tuning the pore windows, pore sizes, open metal sites, and post-synthesis or pre-synthesis modifications of MOFs from the perspective of CO2 capture performance. Furthermore, we summarize the relevant CO2 capture technologies and research advances and describe the application of different strategies in the synthesis of CO2 capture-oriented MOFs.

Keywords

Metal-organic frameworks / carbon capture and separation / CO2 capture strategy

Cite this article

Download citation ▾
Meng Sun, Xiaokang Wang, Fei Gao, Mingming Xu, Weidong Fan, Ben Xu, Daofeng Sun. Synthesis strategies of metal-organic frameworks for CO2 capture. Microstructures, 2023, 3(4): 2023032 DOI:10.20517/microstructures.2023.32

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sejas SA,Cai M.Unmasking the negative greenhouse effect over the antarctic plateau.NPJ Clim Atmos Sci2018;1:17 PMCID:PMC7580794

[2]

Dong K,Jiang Q.Assessing energy resilience and its greenhouse effect: a global perspective.Energy Econ2021;104:105659

[3]

Sullivan I,Digdaya IA.Coupling electrochemical CO2 conversion with CO2 capture.Nat Catal2021;4:952-8

[4]

Friedlingstein P,Jones MW.Global carbon budget 2022.Earth Syst Sci Data2022;14:4811-900

[5]

Parekh A,Dutta A.Sustainability analyses of CO2 sequestration and CO2 utilization as competing options for mitigating CO2 emissions.Sustain Energy Technol Assess2023;55:102942

[6]

Obama B.The irreversible momentum of clean energy.Science2017;355:126-9

[7]

Horike S,Watanabe Y.Dense coordination network capable of selective CO2 capture from C1 and C2 hydrocarbons.J Am Chem Soc2012;134:9852-5

[8]

Wang Q,Lu Z,You X.Finely tuning MOFs towards high-performance post-combustion CO2 capture materials.Chem Commun2016;52:443-52

[9]

Eddaoudi M,Eubank JF,Guillerm V.Zeolite-like metal-organic frameworks (ZMOFs): design, synthesis, and properties.Chem Soc Rev2015;44:228-49

[10]

Wang S,Cairns AJ.Tuning gas adsorption properties of zeolite-like supramolecular assemblies with gis topology via functionalization of isoreticular metal-organic squares.ACS Appl Mater Interfaces2017;9:33521-7

[11]

Zhou HC.Metal-organic frameworks (MOFs).Chem Soc Rev2014;43:5415-8

[12]

Guo B,Wang Y,Xiang J.Study on CO2 adsorption capacity and kinetic mechanism of CO2 adsorbent prepared from fly ash.Energy2023;263:125764

[13]

Pei J,Shao K.Engineering microporous ethane-trapping metal-organic frameworks for boosting ethane/ethylene separation.J Mater Chem A2020;8:3613-20

[14]

Gu XW,Wu E.Immobilization of lewis basic sites into a stable ethane-selective MOF enabling one-step separation of ethylene from a ternary mixture.J Am Chem Soc2022;144:2614-23

[15]

Lv XL,Xie LH.Linker desymmetrization: access to a series of rare-earth tetracarboxylate frameworks with eight-connected hexanuclear nodes.J Am Chem Soc2021;143:2784-91

[16]

Lei Z,Chen W.MOFs-based heterogeneous catalysts: new opportunities for energy-related CO2 conversion.Adv Energy Mater2018;8:1801587

[17]

Cui X,Xing H.Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene.Science2016;353:141-4

[18]

Fu HR,Luo JH. A robust heterometallic Cd(II)/Ba(II)-organic framework with exposed amino group and active sites exhibiting excellent CO2/CH4 and C2H2/CH4 separation. Chin J Struct Chem 2022;41:2203287-92. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0254586123002180 [Last accessed on 11 Aug 2023]

[19]

Usman M,Noor T.Advanced strategies in metal-organic frameworks for CO2 capture and separation.Chem Rec2022;22:e202100230

[20]

Zhang X,Fan W.Pore-environment engineering in multifunctional metal-organic frameworks.Chin J Chem2020;38:509-24

[21]

Bhardwaj A,Wuest M.In situ click chemistry generation of cyclooxygenase-2 inhibitors.Nat Commun2017;8:1 PMCID:PMC5431875

[22]

Palluet A, Lique F. Fine-structure excitation of CCS by He: potential energy surface and scattering calculations.J Chem Phys2023;158:044303

[23]

Harvey S,Kuehl H,Mateeva A.Quest CCS facility: time-lapse seismic campaigns.Int J Greenh Gas Control2022;117:103665

[24]

Li J,Mccarthy MC.Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks.Coord Chem Rev2011;255:1791-823

[25]

D’Alessandro DM,Long JR.Carbon dioxide capture: prospects for new materials.Angew Chem Int Ed2010;49:6058-82

[26]

Fominykh S,Markovic VM,Osmanović S.Analysis of CO2 migration in horizontal saline aquifers during carbon capture and storage process.Sustain2023;15:8912

[27]

Kirchon A,Drake HF,Zhou HC.From fundamentals to applications: a toolbox for robust and multifunctional MOF materials.Chem Soc Rev2018;47:8611-38

[28]

Jansen D,Manzolini G,Carbo M.Pre-combustion CO2 capture.Int J Greenh Gas Control2015;40:167-87

[29]

Kheirinik M,Rahmanian N.Comparative techno-economic analysis of carbon capture processes: pre-combustion, post-combustion, and oxy-fuel combustion operations.Sustain2021;13:13567

[30]

Maffei T,Pierucci S,Ranzi E.Experimental and modeling study of single coal particle combustion in O2/N2 and oxy-fuel (O2/CO2) atmospheres.Combust Flame2013;160:2559-72

[31]

Cau G,Ferrara F,Pettinau A.CO2-free coal-fired power generation by partial oxy-fuel and post-combustion CO2 capture: techno-economic analysis.Fuel2018;214:423-35

[32]

Sircar S.Purification of hydrogen by pressure swing adsorption.Sep Sci Technol2000;35:667-87

[33]

Chao C,Dewil R,Fan X.Post-combustion carbon capture.Renew Sustain Energ2021;138:110490

[34]

Dinca C,Badea A.Benchmarking of the pre/post-combustion chemical absorption for the CO2 capture.J Energy Inst2018;91:445-56

[35]

Na S,Kim H,Lee KS.Modeling of CO2 solubility of an aqueous polyamine solvent for CO2 capture.Chem Eng Sci2019;204:140-50

[36]

Kárászová M,Petrusová Z.Post-combustion carbon capture by membrane separation, review.Sep Purif Technol2020;238:116448

[37]

Liu M,Webley PA,Fu Q.High-throughput CO2 capture using PIM-1@MOF based thin film composite membranes.Chem Eng J2020;396:125328

[38]

Wang Z,Zhang S,Jin J.Polymers of intrinsic microporosity/metal-organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation.J Mater Chem A2017;5:10968-77

[39]

Witt A,Diesch S,Grammel H.New light on ancient enzymes - in vitro CO2 fixation by pyruvate synthase of desulfovibrio africanus and sulfolobus acidocaldarius.FEBS J2019;286:4494-508

[40]

Hefti M,Bjelobrk Z.On the potential of phase-change adsorbents for CO2 capture by temperature swing adsorption.Faraday Discuss2016;192:153-79

[41]

Mesfer MK, Danish M, Fahmy YM, Rashid MM. Post-combustion CO2 capture with activated carbons using fixed bed adsorption.Heat Mass Transfer2018;54:2715-24

[42]

Gutierrez-ortega A,Sempere J,Montes-morán M.A fast methodology to rank adsorbents for CO2 capture with temperature swing adsorption.Chem Eng J2022;435:134703

[43]

Rehman A,Hussain A,Pervaiz E.Adsorption of CO2 on amine-functionalized green metal-organic framework: an interaction between amine and CO2 molecules.Environ Sci Pollut Res Int2019;26:36214-25

[44]

Choi S,Jones CW.Adsorbent materials for carbon dioxide capture from large anthropogenic point sources.ChemSusChem2009;2:796-854

[45]

Yi H,Ning P.Adsorption separation of CO2, CH4, and N2 on microwave activated carbon.Chem Eng J2013;215:635-42

[46]

Jung Y,Nah IW.Designing large-sized and spherical CO2 adsorbents for highly reversible CO2 capture and low pressure drop.Chem Eng J2022;427:131781

[47]

Wahby A,Sepúlveda-escribano A.CO2 adsorption on carbon molecular sieves.Microporous Mesoporous Mater2012;164:280-7

[48]

Li S.CO2 capture and activation with a plasma-sorbent system.Chem Eng J2022;430:132979

[49]

Zhang Q,Yu J.Metal sites in zeolites: synthesis, characterization, and catalysis.Chem Rev2023;123:6039-106

[50]

Su F.CO2 capture from gas stream by zeolite 13X using a dual-column temperature/vacuum swing adsorption.Energy Environ Sci2012;5:9021

[51]

Hong SH,Cho SJ.Chabazite and zeolite 13X for CO2 capture under high pressure and moderate temperature conditions.Chem Commun2014;50:4927-30

[52]

Shang J,Singh R,Liu JZ.Determination of composition range for “molecular trapdoor” effect in chabazite zeolite.J Phys Chem C2013;117:12841-7

[53]

Remy T,Van Tendeloo L.Adsorption and separation of CO2 on KFI zeolites: effect of cation type and Si/Al ratio on equilibrium and kinetic properties.Langmuir2013;29:4998-5012

[54]

Fiuza RA Jr,Correia LB.Preparation of granular activated carbons from yellow mombin fruit stones for CO2 adsorption.J Environ Manage2015;161:198-205

[55]

Xu D,Zhang J.Effects of water vapour on CO2 capture with vacuum swing adsorption using activated carbon.Chem Eng J2013;230:64-72

[56]

Ghazvini M, Vahedi M, Najafi Nobar S, Sabouri F. Investigation of the MOF adsorbents and the gas adsorptive separation mechanisms.J Environ Chem Eng2021;9:104790

[57]

Liu J,McGrail BP,Liu J.Progress in adsorption-based CO2 capture by metal-organic frameworks.Chem Soc Rev2012;41:2308-22

[58]

Zheng D,Heng Y. Recent advances in C2 gases separation and purification by metal-organic frameworks. Chin J Struct Chem 2022;41:2211031-44. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0254586123002441 [Last accessed on 11 Aug 2023]

[59]

Wong-Foy AG,Yaghi OM.Exceptional H2 saturation uptake in microporous metal-organic frameworks.J Am Chem Soc2006;128:3494-5

[60]

Eddaoudi M,Rosi N.Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage.Science2002;295:469-72

[61]

Salahuddin U,Noor T.ZIF-67 Derived MnO2 doped electrocatalyst for oxygen reduction reaction.Catalysts2021;11:92

[62]

Zhu C,Takata M,Habazaki H.Biomass derived porous carbon for superior electrocatalysts for oxygen reduction reaction.J Appl Electrochem2023;53:1379-88

[63]

Yaqoob L,Iqbal N,Mumtaz A.Electrocatalytic performance of NiNH2BDC MOF based composites with rGO for methanol oxidation reaction.Sci Rep2021;11:13402 PMCID:PMC8238968

[64]

Usman M,Al-Maythalony BA.Highly efficient permeation and separation of gases with metal-organic frameworks confined in polymeric nanochannels.ACS Appl Mater Interfaces2020;12:49992-50001

[65]

Jiang H,Shkurenko A.Enriching the reticular chemistry repertoire: merged nets approach for the rational design of intricate mixed-linker metal-organic framework platforms.J Am Chem Soc2018;140:8858-67

[66]

Ming Y,Yang J.Kinetic stability of MOF-5 in humid environments: impact of powder densification, humidity level, and exposure time.Langmuir2015;31:4988-95

[67]

Gu Y,Zhao S.N-donating and water-resistant Zn-carboxylate frameworks for humid carbon dioxide capture from flue gas.Fuel2023;336:126793

[68]

Li JR,Zhou HC.Metal-organic frameworks for separations.Chem Rev2012;112:869-932

[69]

Zhang Z,Xiang S.Perspective of microporous metal-organic frameworks for CO2 capture and separation.Energy Environ Sci2014;7:2868

[70]

Samanta A,Shimizu GKH,Gupta R.Post-combustion CO2 capture using solid sorbents: a review.Ind Eng Chem Res2012;51:1438-63

[71]

Zhang J,Webley PA.Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture.Microporous Mesoporous Mater2008;111:478-87

[72]

Zhou C,Qin H.Defective UiO-66-NH2 monoliths for optimizing CO2 capture performance.Chem Eng J2023;467:143394

[73]

Patel HA,Yavuz CT.Carbon dioxide capture adsorbents: chemistry and methods.ChemSusChem2017;10:1303-17

[74]

Yu H,Liu S.Three new copper(II) coordination polymers constructed from isomeric sulfo-functionalized phthalate tectonics: synthesis, crystal structure, photocatalytic and proton conduction properties.J Solid State Chem2021;294:121860

[75]

O’Keeffe M.Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets.Chem Rev2012;112:675-702

[76]

Stock N.Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites.Chem Rev2012;112:933-69

[77]

Zhu QL.Metal-organic framework composites.Chem Soc Rev2014;43:5468-512

[78]

Bai Y,Xie LH,Li JR.Zr-based metal-organic frameworks: design, synthesis, structure, and applications.Chem Soc Rev2016;45:2327-67

[79]

Kalmutzki MJ,Yaghi OM.Secondary building units as the turning point in the development of the reticular chemistry of MOFs.Sci Adv2018;4:eaat9180 PMCID:PMC6173525

[80]

Moghadam PZ,Wiggin SB.Development of a cambridge structural database subset: a collection of metal-organic frameworks for past, present, and future.Chem Mater2017;29:2618-25

[81]

Farrusseng D,Pinel C.Metal-organic frameworks: opportunities for catalysis.Angew Chem Int Ed2009;48:7502-13

[82]

Morris RV,Gellert R.Identification of carbonate-rich outcrops on Mars by the Spirit rover.Science2010;329:421-4

[83]

Suh MP,Prasad TK.Hydrogen storage in metal-organic frameworks.Chem Rev2012;112:782-835

[84]

He Y,Qian G.Methane storage in metal-organic frameworks.Chem Soc Rev2014;43:5657-78

[85]

Masoomi MY,Dhakshinamoorthy A.Mixed-metal MOFs: unique opportunities in metal-organic framework (MOF) functionality and design.Angew Chem Int Ed2019;58:15188-205

[86]

Ahmad A,Tariq S,Verpoort F.Self-sacrifice MOFs for heterogeneous catalysis: synthesis mechanisms and future perspectives.Mater Today2022;55:137-69

[87]

Small LJ,Rademacher DX.Near-zero power MOF-based sensors for NO2 detection.Adv Funct Mater2020;30:2006598

[88]

Hausdorf S,Böhle T,Mertens FO.Main-group and transition-element IRMOF homologues.J Am Chem Soc2010;132:10978-81

[89]

Titi HM,Dayaker G.Hypergolic zeolitic imidazolate frameworks (ZIFs) as next-generation solid fuels: unlocking the latent energetic behavior of ZIFs.Sci Adv2019;5:eaav9044 PMCID:PMC6450693

[90]

Yang S,Zeng G.Materials Institute Lavoisier (MIL) based materials for photocatalytic applications.Coord Chem Rev2021;438:213874

[91]

Yang J,Zhu X.Band engineering of non-metal modified polymeric carbon nitride with broad spectral response for enhancing photocatalytic CO2 reduction.Chem Eng J2023;461:141841

[92]

Zhang G,Liu Z,Fei H.A robust sulfonate-based metal-organic framework with permanent porosity for efficient CO2 capture and conversion.Chem Mater2016;28:6276-81

[93]

Liu Y,Zhou H.Recent advances in carbon dioxide capture with metal-organic frameworks.Greenhouse Gas Sci Technol2012;2:239-59

[94]

Quílez-bermejo J,San-fabián E,Cazorla-amorós D.Towards understanding the active sites for the ORR in N-doped carbon materials through fine-tuning of nitrogen functionalities: an experimental and computational approach.J Mater Chem A2019;7:24239-50

[95]

Serra-crespo P,Gascon J.Synthesis and characterization of an amino functionalized MIL-101(Al): separation and catalytic properties.Chem Mater2011;23:2565-72

[96]

Dinakar B,Jiang HZH.Overcoming metastable CO2 adsorption in a bulky diamine-appended metal-organic framework.J Am Chem Soc2021;143:15258-70

[97]

Lu W,Yuan D,Wei Z.Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas.Angew Chem Int Ed2012;51:7480-4

[98]

Khan J,Asghar A.Novel amine functionalized metal organic framework synthesis for enhanced carbon dioxide capture.Mater Res Express2019;6:105539

[99]

Mcdonald TM,Krishna R.Enhanced carbon dioxide capture upon incorporation of N,N’-dimethylethylenediamine in the metal-organic framework CuBTTri.Chem Sci2011;2:2022-8

[100]

Tu S,Liu J.Efficient CO2 capture under humid conditions on a novel amide-functionalized Fe-soc metal-organic framework.ACS Appl Mater Interfaces2023;15:12240-7

[101]

Lyu H,Hanikel N.Carbon dioxide capture chemistry of amino acid functionalized metal-organic frameworks in humid flue gas.J Am Chem Soc2022;144:2387-96

[102]

Zhang Z,Peh SB.Mechano-assisted synthesis of an ultramicroporous metal-organic framework for trace CO2 capture.Chem Commun2020;56:7726-9

[103]

Peng YL,Li P.Robust ultramicroporous metal-organic frameworks with benchmark affinity for acetylene.Angew Chem Int Ed2018;57:10971-5

[104]

Bhatt PM,Cadiau A.A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption.J Am Chem Soc2016;138:9301-7

[105]

Zhang Z,Cui J,Xing H.High and selective capture of low-concentration CO2 with an anion-functionalized ultramicroporous metal-organic framework.Sci China Mater2021;64:691-7

[106]

Chakraborty G,Mandal SK.Polar sulfone-functionalized oxygen-rich metal-organic frameworks for highly selective CO2 capture and sensitive detection of acetylacetone at ppb level.ACS Appl Mater Interfaces2020;12:11724-36

[107]

Lin RB,Lin YY,Chen XM.A zeolite-like zinc triazolate framework with high gas adsorption and separation performance.Inorg Chem2012;51:9950-5

[108]

Lin R,Zhou W.Microporous metal-organic framework materials for gas separation.Chem2020;6:337-63

[109]

Fan W,Zhang X.Fine-tuning the pore environment of the microporous Cu-MOF for high propylene storage and efficient separation of light hydrocarbons.ACS Cent Sci2019;5:1261-8 PMCID:PMC6661871

[110]

Jo D,Cho KH,Lee UH.An Amine-functionalized ultramicroporous metal-organic framework for postcombustion CO2 capture.ACS Appl Mater Interfaces2022;14:56707-14

[111]

Lin JB,Vaidhyanathan R.A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture.Science2021;374:1464-9

[112]

Oschatz M.A search for selectivity to enable CO2 capture with porous adsorbents.Energy Environ Sci2018;11:57-70

[113]

Qazvini OT,Telfer SG.Selective capture of carbon dioxide from hydrocarbons using a metal-organic framework.Nat Commun2021;12:197 PMCID:PMC7794324

[114]

Chowdhury P,Dreisbach F.Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: Effect of open metal sites and adsorbate polarity.Microporous Mesoporous Mater2012;152:246-52

[115]

Kökçam-Demir Ü,Esrafili L.Coordinatively unsaturated metal sites (open metal sites) in metal-organic frameworks: design and applications.Chem Soc Rev2020;49:2751-98

[116]

Lim D,Suh MP.Hydrogen storage in a potassium-ion-bound metal-organic framework incorporating crown ether struts as specific cation binding sites.Angew Chem Int Ed2014;126:7953-6

[117]

Shin SR,Lee Y.In Situ mapping and local negative uptake behavior of adsorbates in individual pores of metal-organic frameworks.J Am Chem Soc2021;143:20747-57

[118]

Chen K,Zhao Y,Lu Y.Cucurbit[6]uril-based supramolecular assemblies: possible application in radioactive cesium cation capture.J Am Chem Soc2014;136:16744-7

[119]

Li N,Huang H.Specific K+ binding sites as CO2 traps in a porous MOF for enhanced CO2 selective sorption.Small2019;15:e1900426

[120]

Zhao X,Zhai QG,Feng P.Pore space partition by symmetry-matching regulated ligand insertion and dramatic tuning on carbon dioxide uptake.J Am Chem Soc2015;137:1396-9

[121]

Oh JM,Di C.U1 snRNP regulates cancer cell migration and invasion in vitro.Nat Commun2020;11:1 PMCID:PMC6946686

[122]

Balogun HA,Almenhali S,Alhajaj A.Are we missing something when evaluating adsorbents for CO2 capture at the system level?.Energy Environ Sci2021;14:6360-80

[123]

Wang Q,Yang L.Cover picture: separation of Xe from Kr with record selectivity and productivity in anion-pillared ultramicroporous materials by inverse size-sieving.Angew Chem Int Ed2020;59:3341

[124]

Chen Y,Lv D.Efficient adsorptive separation of C3H6 over C3H8 on flexible and thermoresponsive CPL-1.Chem Eng J2017;328:360-7

[125]

Peng J,Wu Y,Li Z.High-performance selective CO2 capture on a stable and flexible metal-organic framework via discriminatory gate-opening effect.ACS Appl Mater Interfaces2022;14:21089-97

[126]

Jiang Y,Qi S.Cover picture: metal-organic frameworks with target-specific active sites switched by photoresponsive motifs: efficient adsorbents for tailorable CO2 capture.Angew Chem Int Ed2019;58:6457

[127]

Cairns AJ,Wojtas L.Supermolecular building blocks (SBBs) and crystal design: 12-connected open frameworks based on a molecular cubohemioctahedron.J Am Chem Soc2008;130:1560-1

[128]

Song X,Chen C.Pure-supramolecular-linker approach to highly connected metal-organic frameworks for CO2 capture.J Am Chem Soc2019;141:14539-43

AI Summary AI Mindmap
PDF

224

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/