Crystallographic variant mapping using precession electron diffraction data

Marcus H. Hansen , Ainiu L. Wang , Jiaqi Dong , Yuwei Zhang , Tejas Umale , Sarbajit Banerjee , Patrick Shamberger , Matt Pharr , Ibrahim Karaman , Kelvin Y. Xie

Microstructures ›› 2023, Vol. 3 ›› Issue (4) : 2023029

PDF
Microstructures ›› 2023, Vol. 3 ›› Issue (4) :2023029 DOI: 10.20517/microstructures.2023.17
Research Article

Crystallographic variant mapping using precession electron diffraction data

Author information +
History +
PDF

Abstract

In this work, we developed three methods to map crystallographic variants of samples at the nanoscale by analyzing precession electron diffraction data using a high-temperature shape memory alloy and a VO2 thin film on sapphire as the model systems. The three methods are (I) a user-selecting-reference pattern approach, (II) an algorithm-selecting-reference-pattern approach, and (III) a k-means approach. In the first two approaches, Euclidean distance, Cosine, and Structural Similarity (SSIM) algorithms were assessed for the diffraction pattern similarity quantification. We demonstrated that the Euclidean distance and SSIM methods outperform the Cosine algorithm. We further revealed that the random noise in the diffraction data can dramatically affect similarity quantification. Denoising processes could improve the crystallographic mapping quality. With the three methods mentioned above, we were able to map the crystallographic variants in different materials systems, thus enabling fast variant number quantification and clear variant distribution visualization. The advantages and disadvantages of each approach are also discussed. We expect these methods to benefit researchers who work on martensitic materials, in which the variant information is critical to understand their properties and functionalities.

Keywords

Crystallographic variant mapping / precession electron diffraction (PED) / image similarity quantification / k-means

Cite this article

Download citation ▾
Marcus H. Hansen, Ainiu L. Wang, Jiaqi Dong, Yuwei Zhang, Tejas Umale, Sarbajit Banerjee, Patrick Shamberger, Matt Pharr, Ibrahim Karaman, Kelvin Y. Xie. Crystallographic variant mapping using precession electron diffraction data. Microstructures, 2023, 3(4): 2023029 DOI:10.20517/microstructures.2023.17

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nishiyama Z. Martensitic transformation. Amsterdam: Elsevier; 2012.

[2]

Bhadeshia H. Steels: microstructure and properties. Oxford: Butterworth-Heinemann; 2017.

[3]

Zaefferer S,Bleck W.A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel.Acta Mater2004;52:2765-78

[4]

Lagoudas DC. Shape memory alloys: modeling and engineering applications. Berlin: Springer; 2008.

[5]

Otsuka K.Physical metallurgy of Ti-Ni-based shape memory alloys.Prog Mater Sci2005;50:511-678

[6]

Garvie RC.Phase analysis in zirconia systems.J Am Ceram Soc1972;55:303-5

[7]

Morin FJ.Oxides which show a metal-to-insulator transition at the neel temperature.Phys Rev Lett1959;3:34-6

[8]

Goodenough JB.The two components of the crystallographic transition in VO2.J Solid State Chem1971;3:490-500

[9]

Han X,Wang R,Yang D.Structure and substructure of martensite in a Ti36.5Ni48.5Hf15 high temperature shape memory alloy.Acta Mater1996;44:3711-21

[10]

Nishida M,Kawano H.Self-accommodation of B19′ martensite in Ti-Ni shape memory alloys - part I. morphological and crystallographic studies of the variant selection rule.Philos Mag2012;92:2215-33

[11]

Dong J,Young B,Xie KY.Structure and substructure characterization of solution-treated Ni50.3Ti29.7Hf20 high-temperature shape memory alloy.Scr Mater2022;219:114888

[12]

Evirgen A,Santamarta R,Hayrettin C.Relationship between crystallographic compatibility and thermal hysteresis in Ni-rich NiTiHf and NiTiZr high temperature shape memory alloys.Acta Mater2016;121:374-83

[13]

Karaca H,Ded G.Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy.Acta Mater2013;61:7422-31

[14]

Cayron C.What EBSD and TKD tell us about the crystallography of the martensitic B2-B19′ transformation in NiTi shape memory alloys.Crystals2020;10:562

[15]

Rauch EF,Nicolopoulos S,Rouvimov S.Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction.Z Kristall2010;225:103-9

[16]

Rottmann PF.Experimental observations of twin formation during thermal annealing of nanocrystalline copper films using orientation mapping.Scr Mater2017;141:76-9

[17]

Ma X,Yadav S,Xie KY.Grain-subdivision-dominated microstructure evolution in shear bands at high rates.Mate Res Lett2020;8:328-34

[18]

Yadav D,Baldwin JK,Demkowicz MJ.Persistence of crystal orientations across sub-micron-scale “super-grains” in self-organized Cu-W nanocomposites.Scr Mater2021;194:113677

[19]

Johnstone DN,Midgley PA.Nanoscale strain tomography by scanning precession electron diffraction.Microsc Microanal2017;23:1710-1

[20]

Ånes HW,van Helvoort ATJ.Crystal phase mapping by scanning precession electron diffraction and machine learning decomposition.Microsc Microanal2018;24:586-7

[21]

Martineau BH,van Helvoort ATJ,Eggeman AS.Unsupervised machine learning applied to scanning precession electron diffraction data.Adv Struct Chem Imaging2019;3:5

[22]

Bergh T,Crout P.Nanocrystal segmentation in scanning precession electron diffraction data.J Microsc2020;279:158-67

[23]

Portillo J,Nicolopoulos S,Bultreys D.Precession electron diffraction assisted orientation mapping in the transmission electron microscope. In: Materials Science Forum; 2010. pp. 1-7.

[24]

Zhang Y,Gurrola RM.Strategic texturation of VO2 thin films for tuning mechanical, structural, and electronic couplings during metal-insulator transitions.Acta Mater2023;242:118478

[25]

Zhao D,Barbosa A.A reference-area-free strain mapping method using precession electron diffraction data.Ultramicroscopy2023;247:113700

[26]

Jani JM,Subic A.A review of shape memory alloy research, applications and opportunities.Mater Des2014;56:1078-113

[27]

Schofield P,Gurrola RM.Harnessing the metal-insulator transition of VO2 in neuromorphic computing.Adv Mater2022;e2205294

[28]

Corti E,Moselund K,Robertson J.Scaled resistively-coupled VO2 oscillators for neuromorphic computing.Solid State Electron2020;168:107729

[29]

de la Pena F,Tonaas Fauske V.Electron microscopy (big and small) data analysis with the open source software package hyperspy.Microsc Microanal2017;23:214-5

[30]

Wang L,Feng J.On the Euclidean distance of images.IEEE Trans Pattern Anal Mach Intell2005;27:1334-9

[31]

Xia P,Li F.Learning similarity with cosine similarity ensemble.Inf Sci2015;307:39-52

[32]

Wang Z,Sheikh HR.Image quality assessment: from error visibility to structural similarity.IEEE Trans Pattern Anal Mach Intell2004;13:600-12

[33]

Lloyd S.Least squares quantization in PCM.IEEE Trans Pattern Anal Mach Intell1982;28;129-37

[34]

Gulli A. Deep learning with Keras. Birmingham: Packt; 2017.

[35]

Mika S,Smola A,Scholz M. Kernel PCA and de-noising in feature spaces. In: advances in neural information processing systems. Cambridge: MIT Press;1999: pp. 536-42

[36]

Arthur D. k-means++: the advantages of careful seeding. Stanford, 2006. Available from: https://www.researchgate.net/publication/220778887_K-Means_The_Advantages_of_Careful_Seeding [Last accessed on 27 Jun 2023]

[37]

Zhao Y,Zhu Y.Structural, electrical, and terahertz transmission properties of VO2 thin films grown on c-, r-, and m-plane sapphire substrates.J Appl Phys2012;111:053533

[38]

Fan LL,Si C,Zou CW.Synchrotron radiation study of VO2 crystal film epitaxial growth on sapphire substrate with intrinsic multi-domains.Appl Phys Lett2013;102:011604

[39]

Gonzalez RC. Digital image processing. Pearson education: India; 2009.

[40]

Dhanachandra N,Chanu YJ.Image segmentation using k-means clustering algorithm and subtractive clustering algorithm.Procedia Comput Sci2015;54:764-71

[41]

Ray S. Determination of number of clusters in K-means clustering and application in colour image segmentation. In: 4th International Conference on Advances in Pattern Recognition and Digital Techniques. 2023 Jun 17-18; Sydney, Australia. pp. 137-43.

[42]

Ghahramani Z.Unsupervised learning.In: Advanced Lectures on Machine Learning. 2003 Feb 2-14; ML Summer Schools, Canberra, Australia. pp. 72-112

[43]

Ophus C.Four-dimensional scanning transmission electron microscopy (4D-STEM): from scanning nanodiffraction to ptychography and beyond.Microsc Microanal2019;25:563-82

[44]

Williams DB. Transmission Electron Microscopy: Diffraction, Imaging, and Spectrometry. Springer; 2009.

[45]

Oleynikov P,Zou XD.Precession electron diffraction: observed and calculated intensities.Ultramicroscopy2007;107:523-33

AI Summary AI Mindmap
PDF

29

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/