180° head-to-head flat domain walls in single crystal BiFeO3

Wanbing Ge , Richard Beanland , Marin Alexe , Quentin Ramasse , Ana M. Sanchez

Microstructures ›› 2023, Vol. 3 ›› Issue (3) : 2023026

PDF
Microstructures ›› 2023, Vol. 3 ›› Issue (3) :2023026 DOI: 10.20517/microstructures.2023.13
Research Article

180° head-to-head flat domain walls in single crystal BiFeO3

Author information +
History +
PDF

Abstract

We investigate flux-grown BiFeO3 crystals using transmission electron microscopy (TEM). This material has an intriguing ferroelectric structure of domain walls with a period of approximately 100 nm, alternating between flat and sawtooth morphologies. We show that all domain walls are of 180° type and that the flat walls, lying on (112) planes, are reconstructed with an excess of Fe and a deficiency of Bi. This reconstruction is similar to that observed in several previous studies of deposited layers of BiFeO3. The negative charge of the reconstructed layer induces head-to-head polarisation in the surrounding material and a rigid-body shift of one domain relative to the other. These characteristics pin the flat 180° domain walls and determine the domain structure of the material. Sawtooth 180° domain walls provide the necessary reversal of polarisation between flat walls. The high density of immobile domain walls suppresses the ferroelectric properties of the material, highlighting the need for careful control of growth conditions.

Keywords

Bismuth ferrite / ferroelectric domains / 180° domain walls / reconstructed domain walls

Cite this article

Download citation ▾
Wanbing Ge, Richard Beanland, Marin Alexe, Quentin Ramasse, Ana M. Sanchez. 180° head-to-head flat domain walls in single crystal BiFeO3. Microstructures, 2023, 3(3): 2023026 DOI:10.20517/microstructures.2023.13

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Neaton JB,Waghmare UV,Rabe K.First-principles study of spontaneous polarization in multiferroic BiFeO3.Phys Rev B2005;71:014113

[2]

Ramesh R.Multiferroics: progress and prospects in thin films.Nat Mater2007;6:21-9

[3]

Wang J,Zheng H.Epitaxial BiFeO3 multiferroic thin film heterostructures.Science2003;299:1719-22

[4]

Catalan G.Physics and applications of bismuth ferrite.Adv Mater2009;21:2463-85

[5]

Eerenstein W,Scott JF.Multiferroic and magnetoelectric materials.Nature2006;442:759-65

[6]

Scott JF.Data storage. Multiferroic memories.Nat Mater2007;6:256-7

[7]

Kubel F.Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3.Acta Crystallogr B Struct Sci1990;46:698-702

[8]

Glazer AM.The classification of tilted octahedra in perovskites.Acta Crystallogr B Struct Crystallogr Cryst Chem1972;28:3384-92

[9]

Catalan G,Ramesh R.Domain wall nanoelectronics.Rev Mod Phys2012;84:119-56

[10]

Yadav AK,Hsu SL.Observation of polar vortices in oxide superlattices.Nature2016;530:198-201

[11]

Peters JJP,Beanland R,Sanchez AM.Polarization curling and flux closures in multiferroic tunnel junctions.Nat Commun2016;7:13484 PMCID:PMC5116095

[12]

Rusu D,Hase TPA.Ferroelectric incommensurate spin crystals.Nature2022;602:240-4

[13]

Meyer B.Ab initio study of ferroelectric domain walls in PbTiO3.Phys Rev B2002;65:104111

[14]

Bhatnagar A,Heon Kim Y,Alexe M.Role of domain walls in the abnormal photovoltaic effect in BiFeO3.Nat Commun2013;4:3835 PMCID:PMC3868332

[15]

Seidel J,He Q.Conduction at domain walls in oxide multiferroics.Nat Mater2009;8:229-34

[16]

Berger A,Hähnel A,Alexe M.Regular nanodomain vertex arrays in BiFeO3 single crystals.Phys Rev B2012;85:064104

[17]

Jia C,Wang D.Nanodomains and nanometer-scale disorder in multiferroic bismuth ferrite single crystals.Acta Mater2015;82:356-68

[18]

Condurache O,Rojac T.Atomic-level response of the domain walls in bismuth ferrite in a subcoercive-field regime.Nano Lett2023;23:750-6 PMCID:PMC9881151

[19]

Ge W,Alexe M.3D reconstruction of sawtooth 180° tail-to-tail domain walls in single crystal BiFeO3.Adv Funct Mater2023;2301171

[20]

Peters JJP,Rusu D.Polarization screening mechanisms at La0.7Sr0.3MnO3-PbTiO3 interfaces.ACS Appl Mater Interfaces2020;12:10657-63

[21]

Woodward DI.Electron diffraction of tilted perovskites.Acta Crystallogr B2005;61:387-99

[22]

Li L,Xie L.Atomic-scale mechanisms of defect-induced retention failure in ferroelectrics.Nano Lett2017;17:3556-62

[23]

Nelson CT,Zhang Y.Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces.Nano Lett2011;11:828-34

[24]

Lebeugle D,Forget A.Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields.Appl Phys Lett2007;91:022907

[25]

Condurache O,Sakamoto N,Benčan A.Atomically resolved structure of step-like uncharged and charged domain walls in polycrystalline BiFeO3.J Appl Phys2021;129:054102

[26]

Bednyakov PS,Sluka T,Yudin PV.Physics and applications of charged domain walls.NPJ Comput Mater2018;4:65

[27]

Li L,Nelson CT.Atomic scale structure changes induced by charged domain walls in ferroelectric materials.Nano Lett2013;13:5218-23

[28]

Nellist PD.The principles and interpretation of annular dark-field Z-contrast imaging.Adv Electron Electron Phys2000;113:147-203

[29]

Li L,Zhang Y.Control of domain structures in multiferroic thin films through defect engineering.Adv Mater2018;30:e1802737

[30]

MacLaren I,Andersson SM.Strain localization in thin films of Bi(Fe,Mn)O3 due to the formation of stepped Mn4+-rich antiphase boundaries.Nanoscale Res Lett2015;10:407 PMCID:PMC4608946

[31]

Deniz H,Pippel E.Nanoscale Bi2FeO6-x precipitates in BiFeO3 thin films: a metastable Aurivillius phase.J Mater Sci2014;49:6952-60

[32]

Li L,Jokisaari JR.Defect-induced hedgehog polarization states in multiferroics.Phys Rev Lett2018;120:137602

[33]

Rojac T,Malic B.BiFeO3 ceramics: processing, electrical, and electromechanical properties.J Am Ceram Soc2014;97:1993-2011

[34]

Wu J,Xiao D,Wang J.Multiferroic bismuth ferrite-based materials for multifunctional applications: Ceramic bulks, thin films and nanostructures.Prog Mater Sci2016;84:335-402

[35]

Lu J,Fu P.Phase equilibrium of Bi2O3-Fe2O3 pseudo-binary system and growth of BiFeO3 single crystal.J Cryst Growth2011;318:936-41

[36]

Maclaren I,Craven AJ.The atomic structure and chemistry of Fe-rich steps on antiphase boundaries in Ti-doped Bi0.9Nd0.15FeO3.APL Mater2014;2:066106

[37]

Maclaren I,Morris O.Local stabilisation of polar order at charged antiphase boundaries in antiferroelectric (Bi0.85Nd0.15)(Ti0.1Fe0.9)O3.APL Mater2013;1:021102

[38]

Luca G, Strkalj N, Manz S, Bouillet C, Fiebig M, Trassin M. Nanoscale design of polarization in ultrathin ferroelectric heterostructures.Nat Commun2017;8:1419 PMCID:PMC5681682

[39]

Wang H,Chi X.Large-scale epitaxial growth of ultralong stripe BiFeO3 films and anisotropic optical properties.ACS Appl Mater Interfaces2022;14:8557-64

[40]

Zhang J,Liu J.Origin of sawtooth domain walls in ferroelectrics.Phys Rev B2020;101:060103

[41]

Marton P,Paściak M.Zigzag charged domain walls in ferroelectric PbTiO3.Phys Rev B2023;107:094102

AI Summary AI Mindmap
PDF

30

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/