In-situ transmission electron microscopy shedding light on the mechanical properties of nanoscale materials

Chunmeng Liu , Kemeng Yang , Jiaqi Zhang , Shaobo Cheng , Chongxin Shan

Microstructures ›› 2024, Vol. 4 ›› Issue (4) : 2024055

PDF
Microstructures ›› 2024, Vol. 4 ›› Issue (4) :2024055 DOI: 10.20517/microstructures.2023.109
Review

In-situ transmission electron microscopy shedding light on the mechanical properties of nanoscale materials

Author information +
History +
PDF

Abstract

Characterizing the mechanical properties of nanomaterials (NMs) has always been a challenge for researchers due to their size effect and the difficulty of sample manipulation. In recent years, researchers have integrated scanning tunneling microscopy, atomic force microscopy and other techniques into transmission electron microscopy (TEM); thereby, advanced in-situ TEM nanomechanical measurement techniques for NMs have emerged. The study of mechanical properties using in-situ TEM allows a direct correlation among mechanical properties, atomic structures, and their dynamic processes. However, systematic reviews on these in-situ TEM measurement techniques, their working principles, and the corresponding results obtained by these methods are still limited. This review introduces the basic principles of recently developed in-situ TEM techniques (including TEM-atomic force microscopy and TEM-microelectromechanical systems), the features of these measurement techniques, the research progress in characterizing the mechanical properties and deformation behaviors of NMs by the in-situ TEM, and the influence of surface effects and defects on the mechanical properties of NMs. In perspective, several challenges regarding improving the in-situ TEM technique and analyzing the in-situ TEM data are addressed.

Keywords

Nanomaterials / in-situ transmission electron microscopy / mechanical properties / plasticity / Young’s modulus

Cite this article

Download citation ▾
Chunmeng Liu, Kemeng Yang, Jiaqi Zhang, Shaobo Cheng, Chongxin Shan. In-situ transmission electron microscopy shedding light on the mechanical properties of nanoscale materials. Microstructures, 2024, 4(4): 2024055 DOI:10.20517/microstructures.2023.109

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gil-Santos E,Martínez J.Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires.Nat Nanotechnol2010;5:641-5

[2]

Terabe K,Nakayama T.Quantized conductance atomic switch.Nature2005;433:47-50

[3]

Lord AM,Kepaptsoglou DM,Ross FM.Stability of schottky and ohmic Au nanocatalysts to ZnO nanowires.Nano Lett2017;17:6626-36

[4]

Cui L,Hur S.Quantized thermal transport in single-atom junctions.Science2017;355:1192-5

[5]

Jalabert L,Ishida T,Chalopin Y.Ballistic thermal conductance of a lab-in-a-TEM made Si nanojunction.Nano Lett2012;12:5213-7

[6]

Smogunov A,Delin A,Tosatti E.Colossal magnetic anisotropy of monatomic free and deposited platinum nanowires.Nat Nanotechnol2008;3:22-5

[7]

Fernández-rossier J,Untiedt C.Transport in magnetically ordered Pt nanocontacts.Phys Rev B2005;72:224418

[8]

Spataru CD,Benedict LX.Excitonic effects and optical spectra of single-walled carbon nanotubes.Phys Rev Lett2004;92:077402

[9]

Strasser P,Anniyev T.Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts.Nat Chem2010;2:454-60

[10]

Strigl F,Bückle M,Pietsch T.Emerging magnetic order in platinum atomic contacts and chains.Nat Commun2015;6:6172 PMCID:PMC4347049

[11]

Ma X,Wang T.Effect of strain on the electronic and magnetic properties of an Fe-doped WSe2 monolayer.RSC Adv2016;6:69758-63

[12]

Cai X,Wang J,Ren X.Magnetic engineering in 3D transition metals on phosphorene by strain.Phys Lett A2017;381:1236-40

[13]

Jiang C,Xiong W.Effect of strain engineering on magnetism-induced valley splitting in WSe2 based on the WSe2/CrSe2 heterojunction.Appl Phys Lett2021;119:162101

[14]

Yi B,Ren X.Phase transition of nanoscale Au atom chains on NiAl(110).Phys Lett A2020;384:126183

[15]

Li SF,Xue X.Hcp metal nanoclusters with hexagonal A-A bilayer stacking stabilized by enhanced covalent bonding.Phys Rev B2010;82:035443

[16]

Wang J,Li Y.Pressure-induced metallization of lead-free halide double perovskite (NH4)2PtI6.Adv Sci2022;9:e2203442 PMCID:PMC9534948

[17]

Meyers MA. Mechanical behavior of materials. Cambridge University Press; 2008. pp. 154-96. Available from: https://ceimusb.wordpress.com/wp-content/uploads/2015/04/mechanicalbehaviormeyers.pdf [Last accessed on 17 Jun 2023]

[18]

Lagos MJ,Galvão DS.Mechanical deformation of nanoscale metal rods: when size and shape matter.Phys Rev Lett2011;106:055501

[19]

Yang Y,Bai S,Niu C.Activating MoS2 basal planes for hydrogen evolution through the as doping and strain.Phys Lett A2019;383:2997-3000

[20]

Jiang C,Li C,Wang F.Uniaxial strain induced symmetry lowering and valleys drift in MoS2.New J Phys2021;23:053007

[21]

Kong D,Sun S.Surface energy driven liquid-drop-like pseudoelastic behaviors and in situ atomistic mechanisms of small-sized face-centered-cubic metals.Nano Lett2019;19:292-8

[22]

Zhang J,Arai T.Surface effect on Young’s modulus of sub-two-nanometer gold [111] nanocontacts.Phys Rev Lett2022;128:146101

[23]

Diao J,Dunn ML.Surface-stress-induced phase transformation in metal nanowires.Nat Mater2003;2:656-60

[24]

Tosatti E,Kostlmeier S,Di Tolla FD.String tension and stability of magic tip-suspended nanowires.Science2001;291:288-90

[25]

Calvo MR,Dednam W,Caturla MJ.Influence of relativistic effects on the contact formation of transition metals.Phys Rev Lett2018;120:076802

[26]

Wang Y,Xu J.Mechanical properties of spinodal decomposed metallic glass composites.Scr Mater2017;135:41-5

[27]

Tavazza F,Levine LE,Chaka AM.Electron transport in gold nanowires: stable 1-, 2- and 3-dimensional atomic structures and noninteger conduction states.Phys Rev Lett2011;107:126802

[28]

Weinberger CR.Plasticity of metal nanowires.J Mater Chem2012;22:3277-92

[29]

Zhou LG.Are surfaces elastically softer or stiffer?.Appl Phys Lett2004;84:1940-2

[30]

Fujii A,Kurokawa S.Break conductance of noble metal contacts.Phys Rev B2005;72:045407

[31]

Ternes M,Lutz CP.Interplay of conductance, force, and structural change in metallic point contacts.Phys Rev Lett2011;106:016802

[32]

Ternes M,Hirjibehedin CF,Heinrich AJ.The force needed to move an atom on a surface.Science2008;319:1066-9

[33]

Xu F,Mishra A,Zhu Y.Mechanical properties of ZnO nanowires under different loading modes.Nano Res2010;3:271-80

[34]

Wu B,Boland JJ.Mechanical properties of ultrahigh-strength gold nanowires.Nat Mater2005;4:525-9

[35]

Hoffmann S,Moser B.Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires.Nano Lett2006;6:622-5

[36]

Comtet J,Niguès A,Siria A.Atomic rheology of gold nanojunctions.Nature2019;569:393-7

[37]

Canale L,Niguès A.Nanorheology of interfacial water during ice gliding.Phys Rev X2019;9:041025

[38]

Khosravi A,Vanossi A,Siria A.Understanding the rheology of nanocontacts.Nat Commun2022;13:2428 PMCID:PMC9068906

[39]

Shiota T,Valkering AMC,van Ruitenbeek JM.Mechanical properties of Pt monatomic chains.Phys Rev B2008;77:125411

[40]

Oshima Y.In situ TEM observation of controlled gold contact failure under electric bias.Phys Rev B2013;87:081404

[41]

Kondo Y.Synthesis and characterization of helical multi-shell gold nanowires.Science2000;289:606-8

[42]

Wang L,Guan P.In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit.Nat Commun2013;4:2413 PMCID:PMC3778763

[43]

Zhang H,Xu S.Approaching the ideal elastic strain limit in silicon nanowires.Sci Adv2016;2:e1501382 PMCID:PMC4988777

[44]

Nie A,Li P.Approaching diamond’s theoretical elasticity and strength limits.Nat Commun2019;10:5533 PMCID:PMC6892892

[45]

Kiener D.Source truncation and exhaustion: insights from quantitative in situ TEM tensile testing.Nano Lett2011;11:3816-20 PMCID:PMC3172822

[46]

He Y,Liu Z.Atomistic observation on diffusion-mediated friction between single-asperity contacts.Nat Mater2022;21:173-80

[47]

Dang C,Dai B.Achieving large uniform tensile elasticity in microfabricated diamond.Science2021;371:76-8

[48]

Liu P,Song S.Time-resolved atomic-scale observations of deformation and fracture of nanoporous gold under tension.Acta Mater2019;165:99-108

[49]

Guo H,Oh Y.Mechanics and dynamics of the strain-induced M1-M2 structural phase transition in individual VO2 nanowires.Nano Lett2011;11:3207-13

[50]

Chen Y.Chapter Four - Mechanical behaviors of semiconductor nanowires.Semicond Semimet2016;94:109-58

[51]

Lu Y,Huang JY.Fracture of sub-20 nm ultrathin gold nanowires.Adv Funct Mater2011;21:3982-9

[52]

Sun S,Li D.Atomistic mechanism of stress-induced combined slip and diffusion in sub-5 nanometer-sized Ag nanowires.ACS Nano2019;13:8708-16

[53]

Wang X,He Y,Wang G.Atomic-scale friction between single-asperity contacts unveiled through in situ transmission electron microscopy.Nat Nanotechnol2022;17:737-45

[54]

Cheng G,Qin Q.Large anelasticity and associated energy dissipation in single-crystalline nanowires.Nat Nanotechnol2015;10:687-91

[55]

Moresco F.Manipulation of large molecules by low-temperature STM: model systems for molecular electronics.Phys Rep2004;399:175-225

[56]

Svensson K,Olin H.Compact design of a transmission electron microscope-scanning tunneling microscope holder with three-dimensional coarse motion.Rev Sci Instrum2003;74:4945-7

[57]

Kawamoto N,Yamada I.Visualizing nanoscale heat pathways.Nano Energy2018;52:323-8

[58]

Oshima Y,Hirayama H.Development of a miniature STM holder for study of electronic conductance of metal nanowires in UHV-TEM.Surf Sci2003;531:209-16

[59]

Oshima Y,Mouri K,Takayanagi K.Evidence of a single-wall platinum nanotube.Phys Rev B2002;65:121401

[60]

Xu M,Blum T,Pan X.Double-tilt in situ TEM holder with ultra-high stability.Ultramicroscopy2018;192:1-6

[61]

Gibson CT,Abell C,Myhra S.Calibration of AFM cantilever spring constants.Ultramicroscopy2003;97:113-8

[62]

Nafari A,Rusu C,Olin H.MEMS sensor for in situ TEM atomic force microscopy.J Microelectromech Syst2008;17:328-33

[63]

Giessibl FJ,Eguchi T,Hasegawa Y.Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators.Phys Rev B2011;84:125409

[64]

An T,Akiyama K.Atomically-resolved imaging by frequency-modulation atomic force microscopy using a quartz length-extension resonator.Appl Phys Lett2005;87:133114

[65]

Giessibl FJ.Advances in atomic force microscopy.Rev Mod Phys2003;75:949-83

[66]

Zhang J,Tomitori M,Oshima Y.Atomic scale mechanics explored by in situ transmission electron microscopy with a quartz length-extension resonator as a force sensor.Nanotechnology2020;31:205706

[67]

Wang L,Teng J.New twinning route in face-centered cubic nanocrystalline metals.Nat Commun2017;8:2142 PMCID:PMC5732218

[68]

Wang L,Sha X,Zhang Z.Plastic deformation through dislocation saturation in ultrasmall Pt nanocrystals and its in situ atomistic mechanisms.Nano Lett2017;17:4733-9

[69]

Mompiou F.Quantitative grain growth and rotation probed by in-situ TEM straining and orientation mapping in small grained Al thin films.Scr Mater2015;99:5-8

[70]

Xie L.Nonlinear mechanical response of rippled MoS2 nanosheets evaluated by in situ transmission electron microscopy.Appl Surf Sci2022;597:153708

[71]

Zhu Y.An electromechanical material testing system for in situ electron microscopy and applications.Proc Natl Acad Sci USA2005;102:14503-8 PMCID:PMC1253576

[72]

Sato T,Jalabert L.Real-time transmission electron microscope observation of nanofriction at a single Ag asperity.Nanotechnology2012;23:505701

[73]

Sato T,Nomura M,Carpick RW.Ultrahigh strength and shear-assisted separation of sliding nanocontacts studied in situ.Nat Commun2022;13:2551 PMCID:PMC9091249

[74]

Zhang J,Li X.Timely and atomic-resolved high-temperature mechanical investigation of ductile fracture and atomistic mechanisms of tungsten.Nat Commun2021;12:2218 PMCID:PMC8044182

[75]

Nie A,Huang J.Direct observation of room-temperature dislocation plasticity in diamond.Matter2020;2:1222-32

[76]

Chen Y,Liao X.Mechanical behaviors of nanowires.Appl Phys Rev2017;4:031104

[77]

Zhu Y,Xu F.Size effects on elasticity, yielding, and fracture of silver nanowires: in situ experiments.Phys Rev B2012;85:045443

[78]

Feng G,Yoon Y.A study of the mechanical properties of nanowires using nanoindentation.J Appl Phys2006;99:074304

[79]

Dai S,He MR.Elastic properties of GaN nanowires: revealing the influence of planar defects on young’s modulus at nanoscale.Nano Lett2015;15:8-15

[80]

Chen Y,An X.Effect of a high density of stacking faults on the Young’s modulus of GaAs nanowires.Nano Lett2016;16:1911-6

[81]

Wang YB,Joyce HJ.Super deformability and Young’s modulus of GaAs nanowires.Adv Mater2011;23:1356-60

[82]

Liu C,Maezono R,Oshima Y.Stiffer bonding of armchair edge in single-layer molybdenum disulfide nanoribbons.Adv Sci2023;10:e2303477 PMCID:PMC10602518

[83]

Cammarata RC.Surface and interface stress effects in thin films.Prog Surf Sci1994;46:1-38

[84]

Cuenot S,Demoustier-champagne S.Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy.Phys Rev B2004;69:165410

[85]

Zhang J,Tomitori M.Peculiar atomic bond nature in platinum monatomic chains.Nano Lett2021;21:3922-8

[86]

Li D,Zhao Y.In situ atomic-scale quantitative evidence of plastic activities resulting in reparable deformation in ultrasmall-sized Ag nanocrystals.ACS Nano2023;17:23488-97

[87]

Östlund F,Leifer K.Brittle-to-ductile transition in uniaxial compression of silicon pillars at room temperature.Adv Funct Mater2009;19:2439-44

[88]

Wang L,Zhang Z.Direct atomic-scale imaging about the mechanisms of ultralarge bent straining in Si nanowires.Nano Lett2011;11:2382-5

[89]

Zheng X,Yang K.Phase and polarization modulation in two-dimensional In2Se3 via in situ transmission electron microscopy.Sci Adv2022;8:eabo0773 PMCID:PMC9586485

[90]

Seo JH,Yoo Y.Origin of size dependency in coherent-twin-propagation-mediated tensile deformation of noble metal nanowires.Nano Lett2013;13:5112-6

[91]

Chu S,Zhang Y.In situ atomic-scale observation of dislocation climb and grain boundary evolution in nanostructured metal.Nat Commun2022;13:4151 PMCID:PMC9293973

[92]

Wang J,Huang J.Near-ideal theoretical strength in gold nanowires containing angstrom scale twins.Nat Commun2013;4:1742 PMCID:PMC3644094

[93]

Zhu Q,Guang C.Metallic nanocrystals with low angle grain boundary for controllable plastic reversibility.Nat Commun2020;11:3100 PMCID:PMC7303210

[94]

Yang C,Fu L.Chemical inhomogeneity-induced profuse nanotwinning and phase transformation in AuCu nanowires.Nat Commun2023;14:5705 PMCID:PMC10502134

[95]

Fu L,Lu Y.In situ atomistic mechanisms of detwinning in nanocrystalline AuAg alloy.Sci China Mater2022;65:820-6

[96]

Chen B,Wang Y.Anelastic behavior in GaAs semiconductor nanowires.Nano Lett2013;13:3169-72

[97]

Sheng H,Cao F.Anelasticity of twinned CuO nanowires.Nano Res2015;8:3687-93

[98]

Sun J,Lo YC.Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles.Nat Mater2014;13:1007-12

[99]

Wang J,Weinberger CR,Zhu T.In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten.Nat Mater2015;14:594-600

[100]

Li L,Zheng H.Room-temperature oxygen vacancy migration induced reversible phase transformation during the anelastic deformation in CuO.Nat Commun2021;12:3863 PMCID:PMC8222270

[101]

Huang L,Deng Q.In situ scanning transmission electron microscopy observations of fracture at the atomic scale.Phys Rev Lett2020;125:246102

[102]

Ly TH,Cichocka MO,Lee YH.Dynamical observations on the crack tip zone and stress corrosion of two-dimensional MoS2.Nat Commun2017;8:14116 PMCID:PMC5253633

[103]

Wang S,Jung GS.Atomically sharp crack tips in monolayer MoS2 and their enhanced toughness by vacancy defects.ACS Nano2016;10:9831-9

[104]

López-Polín G,Gómez-Navarro C.Confining crack propagation in defective graphene.Nano Lett2015;15:2050-4

[105]

Qiu K,Chen S.Self-healing of fractured diamond.Nat Mater2023;22:1317-23

[106]

Wang Q,Xue X.Negative differential friction predicted in two-dimensional electride commensurate contacts: role of the electronic structure.Phys Rev B2024;109:085420

[107]

Sun J,Pang R.Negative differential friction predicted in 2D ferroelectric In2Se3 commensurate contacts.Adv Sci2022;9:e2103443 PMCID:PMC8805561

[108]

Cheng J,Zhao X.Negative-positive oscillation in interfacial friction of a In2Se3-graphene heterojunction.Phys Rev B2022;106:195416

[109]

Liu K,Zhao X.Negative differential friction coefficients of two-dimensional commensurate contacts dominated by electronic phase transition.Nano Res2022;15:5758-66

[110]

Chen C,Fan X,Diao D.Friction-induced rapid restructuring of graphene nanocrystallite cap layer at sliding surfaces: short run-in period.Carbon2018;130:215-21

[111]

Guerra R,Vanossi A.Ballistic nanofriction.Nat Mater2010;9:634-7

[112]

Bylinskii A,Counts I.Observation of Aubry-type transition in finite atom chains via friction.Nat Mater2016;15:717-21

[113]

Holmberg K.Influence of tribology on global energy consumption, costs and emissions.Friction2017;5:263-84

[114]

Lu H,Yun D,Shan Z.A new approach of using Lorentz force to study single-asperity friction inside TEM.J Mater Sci Technol2021;84:43-8

[115]

Hu Z,Diao D.Facilitation of sp2 nanocrystallites on the formation of transfer films for stable low friction with in-situ TEM nanofriction study.Tribol Int2022;174:107713

[116]

Tang DM,Najmaei S.Nanomechanical cleavage of molybdenum disulphide atomic layers.Nat Commun2014;5:3631

[117]

Chen Y,Wang Y.Determination of Young’s modulus of ultrathin nanomaterials.Nano Lett2015;15:5279-83

[118]

Chen CQ,Zhang YS,Yan YJ.Size dependence of Young’s modulus in ZnO nanowires.Phys Rev Lett2006;96:075505

[119]

Wang X,Shinzato S.Atomistic processes of surface-diffusion-induced abnormal softening in nanoscale metallic crystals.Nat Commun2021;12:5237 PMCID:PMC8413310

[120]

Yin S,Richter G,Zhu Y.Transition of deformation mechanisms in single-crystalline metallic nanowires.ACS Nano2019;13:9082-90

[121]

López-polín G,Parente V.Increasing the elastic modulus of graphene by controlled defect creation.Nature Phys2015;11:26-31

[122]

Lu Y,Zeng Y.Nanoscale ductile fracture and associated atomistic mechanisms in a body-centered cubic refractory metal.Nat Commun2023;14:5540 PMCID:PMC10491606

[123]

Cheng G,Qin Q,Zhu Y.Mechanical properties of silicon carbide nanowires: effect of size-dependent defect density.Nano Lett2014;14:754-8

[124]

Oshima Y,Takayanagi K.Controlling quantized steps in conductance of gold Zigzag nanowires.Appl Phys Express2011;4:055002

[125]

Wang Q,Xiang D.Single-atom switches and single-atom gaps using stretched metal nanowires.ACS Nano2016;10:9695-702

[126]

Qin Q,Cheng G.Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction.Nat Commun2015;6:5983 PMCID:PMC4308715

[127]

Yue Y,Deng Q,Zhang Z.Quantitative evidence of crossover toward partial dislocation mediated plasticity in copper single crystalline nanowires.Nano Lett2012;12:4045-9

[128]

Wang L,Wu Y.Size dependence of dislocation activities and independence on theoretical elastic strain limit in Pt nanocrystals revealed by atomic-resolution in situ investigation.Mater Today Nano2018;2:1-6

[129]

Wang L,Zeng Z.Tracking the sliding of grain boundaries at the atomic scale.Science2022;375:1261-5

[130]

Liu J,Arai T,Oshima Y.Critical shear stress of gold nanocontacts estimated by in situ transmission electron microscopy equipped with a quartz length-extension resonator.Appl Phys Express2021;14:075006

[131]

Suzuki Y.Structure control of tungsten nanocontacts through pulsed-voltage application.Appl Phys Express2018;11:055202

[132]

Zhong L,Sheng H,Mao SX.Formation of monatomic metallic glasses through ultrafast liquid quenching.Nature2014;512:177-80

[133]

Tsuruoka Y,Kizuka T.Reversible phase-transition control in nanometer-sized zirconium wires via pulse-voltage impression.Nano Express2020;1:010050

[134]

Obi T,Tsuruoka Y.Amorphization of pure noble metal nanocontacts by nanosecond electrical energization.J Phys Chem Solids2022;162:110498

[135]

Li X,Hong Y.Revealing the pulse-induced electroplasticity by decoupling electron wind force.Nat Commun2022;13:6503 PMCID:PMC9622885

[136]

Li X,Bustillo K.In situ transmission electron microscopy investigation of electroplasticity in single crystal nickel.Acta Mater2022;223:117461

[137]

Gao L,Hu X.Nano electromechanical approach for flexible piezoresistive sensor.Appl Mater Today2020;18:100475

[138]

Tinoco M,Masaki M,Conesa-Boj S.Strain-dependent edge structures in MoS2 layers.Nano Lett2017;17:7021-6 PMCID:PMC5695858

[139]

Idrus-saidi SA,Ghasemian MB.Liquid metal core-shell structures functionalised via mechanical agitation: the example of Field’s metal.J Mater Chem A2019;7:17876-87

AI Summary AI Mindmap
PDF

29

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/