Charting the course of blood flow: vessel-on-a-chip technologies in thrombosis studies

Jianfang Ren , Zhao Wang , Nixon Du , Wenlong Cheng , Lining Arnold Ju

Microstructures ›› 2024, Vol. 4 ›› Issue (3) : 2024037

PDF
Microstructures ›› 2024, Vol. 4 ›› Issue (3) :2024037 DOI: 10.20517/microstructures.2023.106
Review

Charting the course of blood flow: vessel-on-a-chip technologies in thrombosis studies

Author information +
History +
PDF

Abstract

Cardiovascular diseases, primarily driven by thrombosis, remain the leading cause of global mortality. Although traditional cell culture and animal models have provided foundational insights, they often fail to capture the complex pathophysiology of thrombosis, which hinders the development of targeted therapies for cardiovascular diseases. The advent of microfluidics and vascular tissue engineering has propelled the advancement of vessel-on-a-chip technologies, which enable the simulation of the key aspects of Virchow’s Triad: hypercoagulability, alteration in blood flow, and endothelial wall injury. With the ability to replicate patient-specific vascular architectures and hemodynamic conditions, vessel-on-a-chip models offer unprecedented insights into the mechanisms underlying thrombosis formation and progression. This review explores the evolution of microfluidic technologies in thrombosis research, highlighting breakthroughs in endothelialized devices and their roles in emulating conditions such as vessel stenosis, flow reversal, and endothelial damage. The limitations and challenges of the current vessel-on-a-chip systems are addressed, and future perspectives on the potential for personalized medicine and targeted therapies are presented. Vessel-on-a-chip technology holds immense potential for revolutionizing thrombosis research, enabling the development of targeted, patient-specific diagnostic tools and therapeutic strategies. Realizing this potential will require interdisciplinary collaboration and continued innovation in the fields of microfluidics and vascular tissue engineering.

Keywords

Microfluidics / thrombosis / mechanobiology / endothelialized / vessel-on-a-chip

Cite this article

Download citation ▾
Jianfang Ren, Zhao Wang, Nixon Du, Wenlong Cheng, Lining Arnold Ju. Charting the course of blood flow: vessel-on-a-chip technologies in thrombosis studies. Microstructures, 2024, 4(3): 2024037 DOI:10.20517/microstructures.2023.106

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

World Health Organization. Cardiovascular diseases. Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) [Last accessed on 5 Jun 2023].

[2]

Ashorobi D,Fernandez R. Thrombosis. 2019. https://www.ncbi.nlm.nih.gov/books/NBK538430/ [Last accessed on 5 Jun 2023]

[3]

Kaplan ZS.The role of platelets in atherothrombosis.Hematology Am Soc Hematol Educ Program2011;2011:51-61

[4]

Zhang Y,Chen Y.Platelet mechanobiology inspired microdevices: from hematological function tests to disease and drug screening.Front Pharmacol2021;12:779753 PMCID:PMC8811026

[5]

Ching T,Hashimoto M.Bridging the academia-to-industry gap: organ-on-a-chip platforms for safety and toxicology assessment.Trends Pharmacol Sci2021;42:715-28 PMCID:PMC8364498

[6]

Savoji H,Rafatian N.Cardiovascular disease models: a game changing paradigm in drug discovery and screening.Biomaterials2019;198:3-26 PMCID:PMC6397087

[7]

Nguyen N,Sekar NC.Microfluidic models of the human circulatory system: versatile platforms for exploring mechanobiology and disease modeling.Biophys Rev2021;13:769-86 PMCID:PMC8555051

[8]

Ford ES.Proportion of the decline in cardiovascular mortality disease due to prevention versus treatment: public health versus clinical care.Annu Rev Public Health2011;32:5-22

[9]

Mutch NJ,Gardiner EE.Basic science research opportunities in thrombosis and hemostasis: communication from the SSC of the ISTH.J Thromb Haemost2022;20:1496-506 PMCID:PMC9325489

[10]

Sato K.Chapter 6 - blood vessels-on-a-chip. In: Principles of human organs-on-chips. Sawston, UK: Woodhead Publishing; 2023, pp. 167-94.

[11]

Colace TV,McCarty OJ.Microfluidics and coagulation biology.Annu Rev Biomed Eng2013;15:283-303 PMCID:PMC3935341

[12]

Nguyen T,Tran T,Saha D.Multilayer soft photolithography fabrication of microfluidic devices using a custom-built wafer-scale PDMS slab aligner and cost-efficient equipment.Micromachines2022;13:1357 PMCID:PMC9412704

[13]

Geisterfer ZM,Gatlin JC.Microfluidic encapsulation of Xenopus laevis cell-free extracts using hydrogel photolithography.STAR Protoc2020;1:100221 PMCID:PMC7757658

[14]

Brower K,Fordyce PM.Multi-step variable height photolithography for valved multilayer microfluidic devices.J Vis Exp2017;119:55276 PMCID:PMC5352304

[15]

Hattori K,Kanamori T.Microfluidic perfusion culture.Methods Mol Biol2014;1104:251-63

[16]

Lokai T,Qubbaj K,Adhikari P.A review on current brain organoid technologies from a biomedical engineering perspective.Exp Neurol2023;367:114461

[17]

Halldorsson S,Gómez-Sjöberg R.Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices.Biosens Bioelectron2015;63:218-31

[18]

Alhmoud H,Kaynak BE.Leveraging the elastic deformability of polydimethylsiloxane microfluidic channels for efficient intracellular delivery.Lab Chip2023;23:714-26

[19]

Ju L,Zhou F,Cruz MA.Von willebrand factor-A1 domain binds platelet glycoprotein Ibα in multiple states with distinctive force-dependent dissociation kinetics.Thromb Res2015;136:606-12 PMCID:PMC4553094

[20]

de Witt SM,Cavill R.Identification of platelet function defects by multi-parameter assessment of thrombus formation.Nat Commun2014;5:4257 PMCID:PMC4109023

[21]

Ahn J,Hong SH.Three-dimensional microengineered vascularised endometrium-on-a-chip.Hum Reprod2021;36:2720-31 PMCID:PMC8450871

[22]

Li X,Martins-Green M.Procedure for the development of multi-depth circular cross-sectional endothelialized microchannels-on-a-chip.J Vis Exp2013;80:e50771 PMCID:PMC3947964

[23]

Qiu Y,Sakurai Y.Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease.Nat Biomed Eng2018;2:453-63 PMCID:PMC6286070

[24]

Ching T,Chang SY.Biomimetic vasculatures by 3D-printed porous molds.Small2022;18:e2203426

[25]

Bulboacă AE,Melincovici CS.Microfluidic endothelium-on-a-chip development, from in vivo to in vitro experimental models.Rom J Morphol Embryol2020;61:15-23 PMCID:PMC7728109

[26]

Phan DTT,Craver BM.A vascularized and perfused organ-on-a-chip platform for large-scale drug screening applications.Lab Chip2017;17:511-20 PMCID:PMC6995340

[27]

Tucker WD,Mahajan K.Anatomy, blood vessels. Treasure Island, FL: StatPearls Publishing; 2024.

[28]

Camasão DB.The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review.Mater Today Bio2021;10:100106 PMCID:PMC8050780

[29]

Baskurt OK.Blood rheology and hemodynamics.Semin Thromb Hemost2003;29:435-50

[30]

Secomb TW.Hemodynamics.Compr Physiol2016;6:975-1003 PMCID:PMC4958049

[31]

Pandian NKR,Lam WA.Thrombosis-on-a-chip: prospective impact of microphysiological models of vascular thrombosis.Curr Opin Biomed Eng2018;5:29-34 PMCID:PMC8580137

[32]

Gogia S.Role of fluid shear stress in regulating VWF structure, function and related blood disorders.Biorheology2015;52:319-35 PMCID:PMC4927820

[33]

Aird WC.Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms.Circ Res2007;100:158-73

[34]

Zhang S,Cao Y.Targeting the microenvironment of vulnerable atherosclerotic plaques: an emerging diagnosis and therapy strategy for atherosclerosis.Adv Mater2022;34:e2110660

[35]

Chiu JJ.Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives.Physiol Rev2011;91:327-87 PMCID:PMC3844671

[36]

Bovill EG.Venous valvular stasis-associated hypoxia and thrombosis: what is the link?.Annu Rev Physiol2011;73:527-45

[37]

Blann AD.Venous thromboembolism.BMJ2006;332:215-9 PMCID:PMC1352055

[38]

Voetsch B.Genetic determinants of arterial thrombosis.Arterioscler Thromb Vasc Biol2004;24:216-29

[39]

Bentzon JF,Virmani R.Mechanisms of plaque formation and rupture.Circ Res2014;114:1852-66

[40]

Kumar DR,Glurich I,Yale SH.Virchow’s contribution to the understanding of thrombosis and cellular biology.Clin Med Res2010;8:168-72 PMCID:PMC3006583

[41]

Ashorobi D,Fernandez R.Thrombosis. Treasure Island, FL: StatPearls Publishing; 2024.

[42]

Neubauer K.Endothelial cells and coagulation.Cell Tissue Res2022;387:391-8 PMCID:PMC8975780

[43]

Becker BF,Kupatt C.Endothelial function and hemostasis.Z Kardiol2000;89:160-7

[44]

Halcox JP.Endothelial cell function testing: how does the method help us in evaluating vascular status?.Acta Paediatr Suppl2004;93:48-54

[45]

Wakefield TW,Henke PK.Mechanisms of venous thrombosis and resolution.Arterioscler Thromb Vasc Biol2008;28:387-91

[46]

Wong KH,Kamm RD.Microfluidic models of vascular functions.Annu Rev Biomed Eng2012;14:205-30

[47]

Zhang Y,Preketes-Tardiani RE,Lu H.Emerging microfluidic approaches for platelet mechanobiology and interplay with circulatory systems.Front Cardiovasc Med2021;8:766513 PMCID:PMC8655735

[48]

Westein E,Kuijpers MJ,van den Berg A.Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner.Proc Natl Acad Sci USA2013;110:1357-62 PMCID:PMC3557050

[49]

Tovar-Lopez FJ,Westein E.A microfluidics device to monitor platelet aggregation dynamics in response to strain rate micro-gradients in flowing blood.Lab Chip2010;10:291-302

[50]

Ha H.Hemodynamic features and platelet aggregation in a stenosed microchannel.Microvasc Res2013;90:96-105

[51]

Jung SY.Microfluidic measurement for blood flow and platelet adhesion around a stenotic channel: effects of tile size on the detection of platelet adhesion in a correlation map.Biomicrofluidics2017;11:024119 PMCID:PMC5533492

[52]

Zainal Abidin NA,Szydzik C.An extensional strain sensing mechanosome drives adhesion-independent platelet activation at supraphysiological hemodynamic gradients.BMC Biol2022;20:73 PMCID:PMC8944166

[53]

Jain A,Waterhouse A,Flaumenhaft R.A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function.Nat Commun2016;7:10176 PMCID:PMC4729824

[54]

Zhao YC,Wang Z.Novel movable typing for personalized vein-chips in large scale: recapitulate patient-specific virchow’s triad and its contribution to cerebral venous sinus thrombosis.Adv Funct Mater2023;33:2214179

[55]

Costa PF,Linssen JEA.Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data. Lab Chip 2017;17:2785-92.

[56]

Gimbrone MA Jr,Nagel T,Garcia-Cardeña G.Endothelial dysfunction, hemodynamic forces, and atherogenesis.Ann N Y Acad Sci2000;902:230-9; discussion 239-40

[57]

Menon NV,Pang KT.Recapitulating atherogenic flow disturbances and vascular inflammation in a perfusable 3D stenosis model.Biofabrication2020;12:045009

[58]

Berry J,Masters NA,Goldstein RE.An “occlusive thrombosis-on-a-chip” microfluidic device for investigating the effect of anti-thrombotic drugs.Lab Chip2021;21:4104-17 PMCID:PMC8547327

[59]

Li M,Forest CR.Microfluidic system for simultaneous optical measurement of platelet aggregation at multiple shear rates in whole blood.Lab Chip2012;12:1355-62

[60]

Tovar-Lopez F,Gilliam C.A microfluidic system for studying the effects of disturbed flow on endothelial cells.Front Bioeng Biotechnol2019;7:81 PMCID:PMC6499196

[61]

Hesh CA,Lam WA.Vascularized microfluidics and the blood-endothelium interface.Micromachines2019;11:18 PMCID:PMC7019435

[62]

Sakurai Y,Ahn B.A microengineered vascularized bleeding model that integrates the principal components of hemostasis.Nat Commun2018;9:509 PMCID:PMC5802762

[63]

Ciciliano JC,Myers DR.Resolving the multifaceted mechanisms of the ferric chloride thrombosis model using an interdisciplinary microfluidic approach.Blood2015;126:817-24 PMCID:PMC4528067

[64]

Herbig BA.Thrombi produced in stagnation point flows have a core-shell structure.Cell Mol Bioeng2017;10:515-21 PMCID:PMC5793920

[65]

Jain A,Papa AL.Assessment of whole blood thrombosis in a microfluidic device lined by fixed human endothelium.Biomed Microdevices2016;18:73 PMCID:PMC4963439

[66]

Dupuy A,Mgaieth NSA.Thromboinflammation model-on-a-chip by whole blood microfluidics on fixed human endothelium.Diagnostics2021;11:203 PMCID:PMC7911484

[67]

Zhang X,Zhang G.Modeling early stage atherosclerosis in a primary human vascular microphysiological system.Nat Commun2020;11:5426 PMCID:PMC7591486

[68]

Zheng Y,Craven M.In vitro microvessels for the study of angiogenesis and thrombosis.Proc Natl Acad Sci USA2012;109:9342-7 PMCID:PMC3386137

[69]

Milusev A,Despont A.Glycocalyx dynamics and the inflammatory response of genetically modified porcine endothelial cells.Xenotransplantation2023;30:e12820

[70]

Poventud-Fuentes I,Seo J.A human vascular injury-on-a-chip model of hemostasis.Small2021;17:e2004889 PMCID:PMC8049960

[71]

Yaneva-Sirakova T,Vassilev D.Functional assessment of intermediate vascular disease.Biomed Res Int2018;2018:7619092 PMCID:PMC5925208

[72]

Li Y,Wan W.Engineering a Bi-Conical microchip as vascular stenosis model.Micromachines2019;10:790 PMCID:PMC6915513

[73]

Zhang Y,Cheng V.Microvasculature-on-a-post chip that recapitulates prothrombotic vascular geometries and 3D flow disturbance.Adv Mater Inter2023;10:2300234

[74]

Kolodziejczyk AM,Jakubowska A.Endothelial cell aging detection by means of atomic force spectroscopy.J Mol Recognit2020;33:e2853

[75]

Lai A,Thurgood P.Endothelial response to the combined biomechanics of vessel stiffness and shear stress is regulated via piezo1.ACS Appl Mater Interfaces2023;15:59103-16

[76]

Matai I,Seyedsalehi A,Laurencin CT.Progress in 3D bioprinting technology for tissue/organ regenerative engineering.Biomaterials2020;226:119536

[77]

Chen L,Xiao Y.Millifluidics, microfluidics, and nanofluidics: manipulating fluids at varying length scales.Mater Today Nano2021;16:100136

[78]

Lyu Q,Yin J,Cheng W.Soft wearable healthcare materials and devices.Adv Healthc Mater2021;10:e2100577

[79]

Ray TR,Bandodkar AJ.Bio-integrated wearable systems: a comprehensive review.Chem Rev2019;119:5461-533

AI Summary AI Mindmap
PDF

73

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/